Drug Class Review

Miscellaneous and Serotonergic Agents

28:16.04.92 Antidepressants, Miscellaneous
Bupropion (Wellbutrin®, Wellbutrin® SR; Wellbutrin® XL; Zyban®)
Mirtazapine (Remeron®, Remeron® SolTab™)

28:16.04.24 Serotonin Modulators
Nefazodone (Serzone®)
Trazodone (Desyrel®)
Vilazodone (Viibryd®)
Vortioxetine (Trintellix®)

28:92 Central Nervous System Agents, Miscellaneous
Atomoxetine (Strattera®)

28:28 Antimanic Agents
Lithium (Eskalith CR®, Eskalith®, Lithobid® Slow-release)

Final Report
August 2016

Review prepared by:
Melissa Archer, PharmD, Clinical Pharmacist
Carin Steinvoort, PharmD, Clinical Pharmacist
Vicki Frydrych, PharmD, Clinical Pharmacist
Joanne LaFleur PharmD, MSPH, Associate Professor
Gary Oderda, PharmD, MPH, Professor

University of Utah College of Pharmacy
Copyright © 2016 by University of Utah College of Pharmacy
Salt Lake City, Utah. All rights reserved.
Contents

Executive Summary ... 3

Introduction .. 6

 Table 1. Comparison of the Miscellaneous and Serotonergic Agents 7

 Table 2. Miscellaneous Serotonergic Agents FDA-Labeled Indications 10

Disease Overview .. 11

 Table 3. Current Clinical Practice Guidelines for the Treatment of Depressive Disorders 13

 Table 4. Current Clinical Practice Guidelines for the Treatment of Bipolar Disorder 16

 Table 5: Current Clinical Treatment Practice Guidelines for Attention Deficit Disorder . 21

Pharmacology .. 23

 Table 6. Pharmacokinetic Properties of the Miscellaneous Serotonergic Agents 25

Methods .. 28

Clinical Efficacy .. 28

Safety .. 38

 Table 7. Warnings and Precautions for the Miscellaneous Serotonergic Agents 45

 Table 8. Adverse Events Reported with the Miscellaneous Serotonergic Agents 50

Summary .. 56

References .. 57
Executive Summary

Introduction:

The first antidepressant was discovered in the 1950s while researching treatments for schizophrenia. Some of the earliest had a three-ring chemical structure, tricyclic antidepressants (TCAs). These agents were effective with significant adverse events. Newer agents were developed to target specific receptors with improved safety profiles. This report focuses on miscellaneous and serotonergic modulators (atomoxetine, bupropion, lithium, mirtazapine, nefazodone, trazodone, vilazodone and vortioxetine) which are labeled for use in mental health disorders (depression, bipolar disorder, attention deficit hyperactivity disorder (ADHD), seasonal affective disorder and smoking cessation. All of the miscellaneous agents are available in oral tablet or capsule formulations.

Clinical guidelines for the treatment of depression recommend Cognitive Behavioral Therapy (CBT) for all patients. Recommendations for first-line pharmacotherapy involve use of a second-generation antidepressant. Patients who are partial responders at 6-8 weeks, should receive an alternative antidepressant, a combination of antidepressant agents or adjunctive treatment with another class of medications including lithium, thyroid hormone, atypical antipsychotic agent or dopamine agonist. Non-responders should be referred to a specialist. Medication therapy should be adjusted until full remission is achieved and treatment continued for an additional 6-9 months to prevent relapse. Chronic maintenance therapy is recommended in patients with two or more episodes of depression. Clinical guidelines for the treatment of bipolar disorder recommend medication therapy for acute manic episodes using mood stabilizers, anticonvulsants or antipsychotic agents. Medication therapy should be continued until full remission is achieved and combination therapy is recommended in patients with treatment-resistance to a single agent. Clinical guidelines for the treatment of ADHD recommend treatment of preschool children with CBT; adolescents with both medication and behavioural therapy (BT) and adults with pharmacotherapy. Stimulants are more efficacious than non-stimulants. Therapy starts with a methylphenidate agent unless there is an underlying anxiety disorder, risk for substance abuse or proven methylphenidate resistance. In these cases, treatment with atomoxetine is preferred. Seasonal affective disorder (SAD) is treated with light therapy, Vitamin D supplementation and/or short-term antidepressant therapy with a selective serotonin reuptake inhibitor (SSRI) or bupropion and/or CBT.

Clinical Efficacy:

Atomoxetine, a selective norepinephrine reuptake inhibitor (SNRI), is more efficacious than placebo in the treatment of ADHD in children. Evidence suggests that atomoxetine efficacy is equivalent to methylphenidate and lower than with lisdexamfetamine in various age populations.

Bupropion, a dopamine/norepinephrine-reuptake inhibitor, is effective in the treatment of acute and long-term smoking cessation. In the treatment of depression, bupropion XL was found comparable in efficacy and safety to both venlafaxine XR and trazodone. Overall, bupropion was as efficacious as selective serotonin reuptake inhibitors (SSRIs); however, SSRIs demonstrated superiority in the setting of anxious depression.

Lithium, an antimanic agent, is more efficacious in preventing relapse in bipolar disorder than placebo or antidepressants. Lithium is more efficacious than anticonvulsants in preventing recurrences of manic episodes; however, limited evidence did not find lithium superior to other agents in the setting of depressive episodes. In the treatment of depression, lithium effectively augments the response of tricyclic
and second-generation antidepressants. The rate of suicide in mood disorders is reduced when therapy includes lithium.

Mirtazapine, an alpha-2 antagonist, demonstrates efficacy in the treatment of depression equivalent to SSRIs and superior to trazodone. Time to remission is shorter with mirtazapine than comparator agents. Evidence suggests that mirtazapine may be efficacious for treatment-resistant depression, geriatric depression, depression associated with agitation and anxiety and for the treatment of antipsychotic-induced akathisia.

Trazodone, a serotonin reuptake inhibitor/antagonist, is effective in the treatment of depression when compared with placebo. Limited evidence supports similar antidepressant efficacy as imipramine, nefazodone, trazodone and fluoxetine. Trazodone demonstrated efficacy in the off-label indications of insomnia and pediatric headache.

Vilazodone is an SSRI and partial 5HT\(_{1A}\) receptor agonist. It is more efficacious than placebo in the treatment of depression and may offer a more rapid response to therapy versus other antidepressants. Additional comparative clinical trials are needed to determine the clinical utility of vilazodone.

Vortioxetine is an SSRI and a 5HT\(_{1A}\) receptor agonist as well as a 5HT\(_3\) receptor antagonist. It is more efficacious than placebo in the treatment of depression. Limited evidence suggests vortioxetine outcomes compare to other serotonin-norepinephrine reuptake inhibitors (SNRIs). Vortioxetine may have additional utility in the setting of generalized anxiety disorders.

Safety:

Black Box Warnings:

Bupropion, mirtazapine, nefazodone, trazodone, vilazodone, vortioxetine and atomoxetine medications are labeled with a Black Box Warning.\(^1,2\) Use of these agents is associated with an increased risk of suicidal thoughts and behaviors in children, adolescents and young adults. Lithium labeling includes a Black Box Warning reminding prescribers that toxicity is related to serum levels, that toxic levels occur at near therapeutic levels and toxic levels may not differ overlap and that the drug should be initiated only with the availability of lithium monitoring.\(^1,2\)

Adverse Events / Serious Adverse Events:

The most common adverse events associated with atomoxetine at an incidence greater than 10% include increased, headache, insomnia, drowsiness, hyperhidrosis, xerostomia, nausea, decreased appetite, abdominal pain, vomiting, constipation, erectile dysfunction, tachycardia and systolic/diastolic blood pressure elevations. Serious adverse events associated with atomoxetine use include myocardial infarction, sudden cardiac death, liver injury or failure, cerebrovascular accident, dyskinesia, seizure, mania, psychotic disorder, priapism and angioedema.

The most common adverse events associated with bupropion occurring at an incidence greater than 10% are tachycardia, headache, agitation, dizziness, insomnia, diaphoresis, weight loss, xerostomia, nausea, constipation, blurred vision and pharyngitis. Serious adverse events associated with bupropion use include complete ativoventricular block, myocardial infarction, colitis, pancreatitis, pancytopenia, abnormal liver function, hepatitis, jaundice, liver damage, anaphylactoid reaction, anaphylaxis, delayed hypersensitivity disorder, rhabdomyolysis, seizure, delusional disorder, worsening depression, hallucinations, hostile behavior, activation of hypomania.

The most common adverse events associated with lithium use at an incidence greater than 10% include acne, hypothyroidism, weight gain, gastritis, nausea, xerostomia, leukocytosis, fine tremor, deep
tendon hyperreflexia, nephrotoxicity, polyuria, and increased thirst. Serious adverse events associated with lithium use include bradyarrhythmias, Brugada syndrome, sinus node dysfunction, reduction in peripheral circulation (transient), erythema multiforme, ataxia, coma, pseudotumor cerebri, increased intracranial pressure, papilledema, epileptiform seizure, blurred vision, tinnitus, giddiness, renal interstitial fibrosis and angioedema.

The most common adverse events associated with mirtazapine use at an incidence greater than 10% include increased appetite, elevated triglycerides/cholesterol, weight gain, xerostomia constipation, and somnolence. Serious adverse events associated with mirtazapine use include agranulocytosis, neutropenia, liver cirrhosis, grand mal seizure, status epilepticus, exacerbation of depression, neuroleptic malignant syndrome and serotonin syndrome.

The most common adverse events associated with nefazodone use at an incidence greater than 10% include orthostatic hypotension, constipation, nausea, xerostomia, asthenia, confusion, dizziness, headache, lightheadedness, agitation, drowsiness, insomnia, somnolence, weakness and blurred vision. Serious adverse events associated with nefazodone use include neutropenia, electrocardiogram changes, Stevens-Johnson syndrome, hepatitis/liver failure, anaphylaxis, seizures (rarely), serotonin syndrome, exacerbation of depression, priapism and angioedema.

The most common adverse events associated with trazodone use at an incidence greater than 10% include nausea, xerostomia, dizziness, headache, somnolence, blurred vision, nervousness and fatigue. Serious adverse events associated with trazodone use include cardiac dysrhythmia, hypotension, prolonged QT interval, torsades de pointes, hypersensitivity reactions, seizure, serotonin syndrome and priapism.

The most common adverse events associated with vilazodone use at an incidence greater than 10% include diarrhea, nausea, vomiting, and headache. Serious adverse events associated with vilazodone use include premature ventricular beats, abnormal bleeding, withdrawal syndrome and serotonin syndrome.

The most common adverse event associated with vortioxetine use at an incidence greater than 10% is nausea. Although self-reporting of sexual dysfunction was low, scores on the Arizona Sexual Experience Scale did exceed 10% for both men and women. Serious adverse events associated with vortioxetine use include hyponatremia, abnormal bleeding, activation of mania/hypomania and serotonin syndrome.

Summary:

Overall, each of the miscellaneous serotonergic agents demonstrates efficacy in the treatment of labeled indications. Evidence supports the use of bupropion in the treatment of smoking cessation. Evidence supports the use of atomoxetine in the treatment of ADHD with efficacy similarly to methylphenidate. Evidence supports the use of lithium in bipolar disorder. Comparative trials among the miscellaneous serotonergic agents in the treatment of depression are limited and evidence is insufficient to identify any agent(s) with superior efficacy. The miscellaneous serotonergic medications differ in their adverse event profiles. Limited comparative evidence finds the agents safe. Individualization of therapy is recommended with consideration of the patient age, history, comorbidities, type and severity of mental disorder, underlying disease and concurrent medications.
Introduction

The first antidepressant was discovered in the 1950s while researching treatments for schizophrenia.4,5 Imipramine altered the brain's neurotransmitters and resulted in feelings of euphoria. Many other antidepressant medications with a similar three-ring chemical structure became available over the next couple of decades. Unfortunately, these “tricyclic” antidepressant (TCA) agents also resulted in serious adverse effects including somnolence, anticholinergic effects and overdose deaths.6 In the 1980s, the development of a more targeted class of antidepressant medications, known as selective serotonin reuptake inhibitors (SSRIs), provided safer options for patients with mental health disorders. The SSRIs demonstrated similar rates of efficacy as the TCAs but with reduced rates of adverse effects and lower risk of death from overdose. By 1990, fluoxetine (Prozac®), an SSRI antidepressant, was listed as one of the most highly prescribed agents in the US, with \(\sim65,000\) prescriptions filled monthly and over \$1\ billion in annual sales.4 The development of new antidepressant agents with varying neurotransmitter selectivity and unique mechanisms of action continues today with the goal of creating highly effective and safe therapeutic treatment options.

As a class, the antidepressant agents are indicated in the treatment of a variety of mental health disorders (including depression, anxiety and other mood disorders) as well as some non-psychiatric conditions (including musculoskeletal pain, neuropathies, fibromyalgia, insomnia and tobacco abuse).7-10 The antidepressants may be categorized into different subclasses depending on mechanism of action and serotonergic activity including TCAs, monoamine oxidase inhibitors (MAOIs), SSRIs, selective serotonin-and-norepinephrine-reuptake inhibitors (SNRIs), serotonin modulators and many other miscellaneous agents. The agents that make up these serotonergic subclasses are associated with several Food and Drug Administration (FDA) approved indications, varying mechanisms of action and differing rates of adverse events/drug interactions.7,8 This report will focus on the miscellaneous and serotonergic agents: atomoxetine, bupropion, lithium, mirtazapine, nefazodone, trazodone, vilazodone and vortioxetine. All of the miscellaneous agents are available in oral tablet or capsule formulations and are labeled for use in the treatment of mental health disorders.9,10 See Table 1 for a summary of the included agents and Table 2 for a review of the labeled indications for each of the agents.
Table 1. Comparison of the Miscellaneous and Serotonergic Agents9,10

<table>
<thead>
<tr>
<th>Agent</th>
<th>Preparations</th>
<th>Labeled Indications</th>
<th>Off-label Indications</th>
<th>Dosing, Adult</th>
<th>Dosing, pediatric</th>
<th>Generic Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antidepressants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bupropion (Wellbutrin®; Wellbutrin® SR; Wellbutrin® XL; Zyban®)</td>
<td>Oral tablet, as hydrochloride: 75 mg, 100 mg</td>
<td>Major depressive disorder (Aplenzin, Forfivo XL, Wellbutrin, Wellbutrin SR, Wellbutrin XL)</td>
<td>Attention deficit hyperactivity disorder; Depression associated with bipolar disorder; Promotion of weight loss</td>
<td>Depression IR: 100 mg 2-3 times daily; max dose 450 mg daily in 3 or 4 divided doses SR: 150 mg twice daily; max dose 200 mg twice daily XL, HCL: 150-300 mg once daily; max dose 300 mg/day, guidelines state up to 450 mg/day XL, Hydrobromide: 174-348 mg once daily; max dose 522 mg daily *Switching from HCL (bupropion IR, SR, XL) to hydrobromide (Aplenzin): Bupropion HCL 150 mg daily = bupropion hydrobromide 174 mg daily Bupropion HCL 300 mg daily = bupropion hydrobromide 348 mg daily Bupropion HCL 450 mg daily = bupropion hydrobromide 522 mg daily Seasonal affective disorder: initiate treatment in autumn prior to symptom onset & discontinue in early spring with dose tapering XL, HCL: 150-300 mg once daily XL, Hydrobromide: 174-348 mg once daily Smoking cessation (Zyban, Buproban; begin at least 1 week before target quit date) 150 mg twice daily for 7-12 weeks; max dose 300 mg daily</td>
<td>Not indicated</td>
<td>Yes</td>
</tr>
<tr>
<td>Agent</td>
<td>Preparations</td>
<td>Labeled Indications</td>
<td>Off-label Indications</td>
<td>Dosing, Adult</td>
<td>Dosing, pediatric</td>
<td>Generic Available</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>-----------------------</td>
<td>-------------------</td>
<td>-------------------</td>
</tr>
</tbody>
</table>
| Mirtazapine (Remeron®; Remeron® SolTab™) | Oral tablet: 7.5 mg, 15 mg, 30 mg, 45 mg
Oral tablet, dispersible: 15 mg, 30 mg, 45 mg | Major depressive disorder | Obsessive-Compulsive Disorder, Post Traumatic Stress Disorder | 15-45 mg daily | Not indicated | Yes |
| Serotonin Modulators | | | | | | |
| Nefazodone (Serzone®) | Oral tablet: 50 mg, 100 mg, 150 mg, 200 mg, 250 mg | Depression | None listed | 150-600 mg daily in 2 divided doses | Not indicated | Yes |
| Trazodone (Desyrel®) | Oral tablet: 50 mg, 100 mg, 150 mg, 300 mg
Oral tablet, Extended Release (Oleptro®); 150 mg, 300 mg | Treatment of major depressive disorder | Antidepressant augmentation, Insomnia | IR: 150 mg daily in divided doses; maximum dose 600 mg daily (inpatients), 400 mg daily (outpatients) | Not indicated | Yes |
<p>| Vilazodone (Viibryd®) | Oral tablet: 10 mg, 20 mg, 40 mg; starter pack (10 & 20 mg) | Major depressive disorder | None listed | 20-40 mg once daily | | |
| Vortioxetine (Trintellix *) | Oral tablet: 5 mg, 10 mg, 20 mg | Major depressive disorder | None listed | 5-20 mg once daily | | |
| | | | | **Dosing adjustment recommended with concomitant strong CYP2D6 inhibitors/inducers and poor metabolizers | Not indicated | No |
| Central Nervous System Agents | | | | | | |
| Atomoxetine (Strattera®) | Oral capsule: 10 mg, 18 mg, 25 mg, 40 mg, 60 mg, 80 mg, 100 mg | Attention-deficit/hyperactivity disorder | Binge eating disorder, Nocturnal enuresis | 40-100 mg once daily | | No |</p>
<table>
<thead>
<tr>
<th>Agent</th>
<th>Preparations</th>
<th>Labeled Indications</th>
<th>Off-label Indications</th>
<th>Dosing, Adult</th>
<th>Dosing, pediatric</th>
<th>Generic Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lithium (Eskalith CR®, Eskalith®; Lithobid® Slow-release)</td>
<td>Oral capsule: 150 mg, 300 mg, 600 mg</td>
<td>Bipolar disorder</td>
<td>Bipolar depression, Augmentation of antidepressant</td>
<td>IR: 900-1,800 mg daily in 3 to 4 divided doses</td>
<td>Children 6 to 12 years: off-label</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Oral solution: 8 mEq/5 mL</td>
<td></td>
<td></td>
<td>ER: 900-1,800 mg daily in 2 divided doses</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oral tablet: 300 mg</td>
<td></td>
<td></td>
<td>*Monitor serum concentrations and clinical response (efficacy and toxicity) to determine proper dose</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oral tablet, Extended Release: 300 mg, 450 mg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key: IR = immediate release; ER: extended release; SR: 12-hour extended release; XL: 24-hour extended release; DCS - ; CYP – Cytochrome P450 (enzyme)
Table 2. Miscellaneous Serotonergic Agents FDA-Labeled Indications9,10

<table>
<thead>
<tr>
<th></th>
<th>Major Depressive Disorder</th>
<th>Bipolar Disorder</th>
<th>Attention-deficit/hyperactivity disorder</th>
<th>Seasonal Affective Disorder</th>
<th>Smoking Cessation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antidepressants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bupropion (Wellbutrin®; Wellbutrin® SR; Wellbutrin® XL; Zyban®)</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Mirtazapine (Remeron®; Remeron® SolTab™)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serotonin Modulators</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nefazodone (Serzone®)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trazodone (Desyrel®)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vilazodone (Viibryd®)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vortioxetine (Trintellix®)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Central Nervous System Agents</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atomoxetine (Strattera®)</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimanic Agents</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lithium (Eskalith CR®; Eskalith®; Lithobid® Slow-release)</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Disease Overview

Mental illness is defined as any diagnosable mental disorder with sustained abnormalities in behavior, mood or thinking that result in impaired functioning and distress. Diagnosable mental disorders may include anxiety disorders, mood disorders, personality disorders, attention deficit disorders, schizophrenia, addiction disorders and feeding/eating disorders. The most commonly reported mental illnesses in adults in the United States (US) are anxiety and mood disorders, including depression and bipolar disorder. The most commonly reported mental illnesses in adolescents in the US are depression and attention deficit disorders. All mental illnesses can cause severe disruptions in activities of daily living and result in premature death. According to the World Health Organization (WHO), mental health disorders cause more patient disability than cancer, heart disease or any other illness. In addition, mental health disorders are associated with increased rates of comorbid chronic diseases (including cardiovascular disease, diabetes, obesity, asthma, epilepsy and cancer); inappropriate use of medical care (including treatment nonadherence and increased emergency department visits); use of tobacco products, abuse of alcohol and other substances; increased rates of intentional and unintentional injuries and an overall increase in adverse health outcomes. According to the Centers for Disease Prevention and Control (CDC), approximately 25% of all adults currently have a mental illness and up to 50% of adults will report a mental illness during their lifetime resulting in an economic burden of nearly $300 billion in the US (2002). Increased access to mental health treatment services results in successful management of the mental health disorder, reduced rates of mortality and morbidity and improved health outcomes for comorbid chronic diseases.

Major Depressive Disorder

The mood disorders (including depressive disorder, bipolar disorder, etc.) affect approximately one in ten adult Americans. Major depressive disorder is the most common of the mood disorders, affecting nearly 15% of US adults. In 2004, depression was listed as the third most common cause of disease burden across the world. In general, depression occurs more frequently in women than men, in the 40-59 year age range, and in patients living below the poverty level. Depressive disorder is linked to increased rates of chronic disease, health care utilization and impaired activities of daily living. Almost half of all patients with depression experience inabilities to maintain healthy work, home and social habits. The economic burden of depression in the US (~$83.1 billion in 2000) results from the combined costs associated with increased rates of indirect costs (unemployment, lost productivity, etc.) in addition to direct healthcare costs. Depression is frequently underdiagnosed and, even more frequently, depression is inadequately treated. Improving disease education and increasing access to care will help to improve clinical outcomes and save costs.

Depression is a serious mental disorder characterized by changes in cognitive and physical behaviors with a loss of pleasure in enjoyable activities. Major depression is defined as the presence of at least 5 symptoms during a minimum of a 2-week period that reflect a change in previous functioning and cause distress or impairment in normal activities. Symptoms associated with a depression episode must include sadness and/or loss of interest or pleasure and may also include significant unexplained weight loss, insomnia or hypersomnia, agitation, fatigue, feeling worthless or excessive guilt, reduced ability to concentrate and recurrent thoughts of death. In some patients (< 2% of the general population), depression may not be clearly associated with
acute distress, impairment or change from previous functioning. Dysthymic disorder is defined as a persistent depressive mood with chronic (≥2 years) with ongoing symptoms that tend to be less severe and/or numerous than for diagnosis of major depressive disorder.12

Drug therapy is the foundation of the medical management of the mood disorders. Before the introduction of the second-generation antidepressants, drug therapy was limited to TCAs and MAOIs, known collectively as the first-generation antidepressants. The first generation antidepressants are associated with many intolerable adverse effects (sedation and anticholinergic effects) and are no longer agents of choice for treating depressive disorders. As a result, the second-generation antidepressants, including the selective serotonergic agents and serotonin modulators, are one of the leading drug classes in the US pharmaceutical market and accounted for $10.9 billion in US prescription sales in 2003.13,17 Clinical evidence suggests the most efficacious treatment for depression includes a combination of psychological therapy and medication therapy for at least 6-8 weeks with a treatment plan to reduce the risk of disease/symptom recurrence.13 Almost half of all patients being treated for depression by their primary care provider will discontinue their medication therapy within a month, unless proper education and a treatment plan are provided. Selection of an antidepressant agent should be based on treatment history, comorbid conditions and patient preference. In patients demonstrating suicidal ideation, for example, drug selection should be based on agents with low toxicity if taken in overdose.12

Clinical guidelines for the treatment of depression include the World Federation of Societies of Biological Psychiatry (WFSBP) Guidelines for Biological Treatment of Unipolar Depressive Disorders (2013),18 the American Psychiatric Association Practice Guideline for the Treatment of Patients with Major Depressive Disorder (2010)19, the National Institute for Health and Clinical Excellence (NICE) Depression in adults: recognition and management (2009)20 and American Academy of Child and Adolescent Psychiatry (AACAP): Practice Parameter for the Assessment and Treatment of Children and Adolescents with Depressive Disorders (2007).21 See Table 3 for a summary of the most current guideline recommendations. In general, the guidelines recommend use of a second-generation antidepressant for the treatment of depression. First-line agents typically include those for which the patient has had a previous positive response or a family history of a positive response. If only a partial response is achieved at 6-8 weeks, referral to a mental health specialist is recommended. Partial responders should receive an alternative antidepressant, a combination of antidepressant agents or adjunctive treatment with another class of medications including lithium, thyroid hormone, atypical antipsychotic agent or dopamine agonist. A large randomized controlled trial examining Sequenced Treatment Alternatives to Relieve Depression (STAR*D) did not report any differences in efficacy between the adjunctive medication classes.22 Medication therapy should be adjusted until full remission is achieved and treatment should be continued for an additional 6-9 months to prevent relapse. Chronic maintenance therapy is recommended in patients with two or more depression episodes. Cognitive Behavioral Therapy (CBT) is recommended for all patients with depressive disorder.12
Table 3. Current Clinical Practice Guidelines for the Treatment of Depressive Disorders

<table>
<thead>
<tr>
<th>Guideline</th>
<th>Recommendations</th>
</tr>
</thead>
</table>
| **World Federation of Societies of Biological Psychiatry (WFSBP) guidelines for biological treatment of unipolar depressive disorder (2013)**¹⁹ | • Medication therapy in combination with psychological counseling is recommended
• A treatment plan and disease/medication education are recommended for all patients
• Antidepressant agents are recommended as first-line
 ▪ No single class of antidepressants has proven to be more effective than another
 ▪ Amitriptyline, clomipramine and venlafaxine have demonstrated increased efficacy in severely depressed hospitalized patients
• Second- (bupropion, trazodone) and third- (SSRI, SNRIs, mirtazapine) generation antidepressants are generally better tolerated than the older agents
• In treatment-resistant patients: increasing the dose, switch to another antidepressant agent, combine two antidepressants, augmenting the antidepressant with other agents (best evidence for aripiprazole, lithium, quetiapine) |
| **National Institute for Health and Clinical Excellence (NICE) Depression in adults: recognition and management (2009)**²⁰ | **Mild-Moderate Disorder**
First-line: low-intensity psychosocial intervention
Second-line: antidepressant therapy (typically SSRI) OR a high-intensity psychosocial intervention
Moderate-Severe Disorder
First-line: combination antidepressant therapy and a high-intensity psychological intervention
Antidepressant agents
• SSRIs have a favorable risk-benefit ratio
• Fluoxetine, fluvoxamine and paroxetine are associated with increased risk of drug interactions
• Venlafaxine and tricyclic antidepressants are associated with increased risk of death from overdose
• MAOIs should only be prescribed by specialists
• In treatment-resistant patients, increase dose or switch to another antidepressant |
| **American Psychiatric Association (APA): Practice Guideline for the Treatment of Patients with Major Depressive Disorder (2010)**²¹ | **Acute phase**
First-line: antidepressant medication (SSRI, SNRI, bupropion, mirtazapine)
• The effectiveness of antidepressant medications are comparable and initial selection is based on adverse effect profile, prior treatments, cost and patient preference
 ▪ If side effects occur, lower dose or switch agents
 ▪ If no response or partial response: increase dose, switch agents or augment the antidepressant with another antidepressant or a non-antidepressant medication (lithium, thyroid hormone or a second generation antipsychotic)
Continuation phase
Continue successful treatment for 6-9 months and monitor for signs of relapse |
<table>
<thead>
<tr>
<th>Guideline</th>
<th>Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maintenance phase</td>
<td>Continue successful treatment in patients with three or more depressive episodes or with additional risk factors for relapse</td>
</tr>
<tr>
<td>Discontinuation of treatment</td>
<td>Taper the medication over the course of at least several weeks</td>
</tr>
<tr>
<td>Other notes</td>
<td>Combination of antipsychotic and antidepressant medications is recommended in patients with psychotic symptoms</td>
</tr>
<tr>
<td>Institute for Clinical Systems Improvement (ICSI): Major Depression in Adults in Primary Care (2011)</td>
<td></td>
</tr>
<tr>
<td>Recommended pharmacotherapy:</td>
<td>SSRIs, venlafaxine, duloxetine, desvenlafaxine, mirtazapine, bupropion</td>
</tr>
<tr>
<td>Other options:</td>
<td>Secondary amine TCAs, MAOIs</td>
</tr>
<tr>
<td>Augmentation therapy:</td>
<td>bupropion, buspirone, mirtazapine, triiodothyronine (T3), stimulants, TCA-SSRI combination, lithium, atypical antipsychotics</td>
</tr>
<tr>
<td>Recommended in patients with treatment-resistant or partially-responsive disease and referral to a mental health specialist is advised</td>
<td></td>
</tr>
<tr>
<td>Canadian Network for Mood and Anxiety Treatments (CANMAT) Clinical guidelines for the management of major depressive disorder in adults (2009)</td>
<td></td>
</tr>
<tr>
<td>Selection of an antidepressant agent should be based on disease severity, comorbid conditions, adverse effect profile, treatment history, potential drug–drug interactions, patient preference and cost; Use of antidepressant should be accompanied by patient education, close monitoring (1-4 weeks) and self-management techniques</td>
<td></td>
</tr>
<tr>
<td>First-line recommendations</td>
<td>Bupropion, citalopram, desvenlafaxine, duloxetine, escitalopram, fluoxetine, fluvoxamine, milnacipran, mirtazapine, paroxetine, sertraline, venlafaxine</td>
</tr>
<tr>
<td>Second-line recommendations</td>
<td>Amitriptyline, clomipramine and other TCAs; quetiapine; selegiline; trazodone</td>
</tr>
<tr>
<td>Third-line recommendations</td>
<td>Phenelzine, tranylcypromine</td>
</tr>
<tr>
<td>American Academy of Child and Adolescent Psychiatry (AACAP): Practice Parameter for the Assessment and Treatment of Children and Adolescents with Depressive Disorders (2007)</td>
<td></td>
</tr>
<tr>
<td>• A confidential relationship should be maintained with the child or adolescent</td>
<td></td>
</tr>
<tr>
<td>• Psychiatric assessments should routinely be made</td>
<td></td>
</tr>
<tr>
<td>• Treatment should always include an acute and continuation phase, some may require maintenance treatment</td>
<td></td>
</tr>
<tr>
<td>First-line: support psychotherapy</td>
<td></td>
</tr>
<tr>
<td>Second-line: psychotherapy and/or antidepressants</td>
<td></td>
</tr>
<tr>
<td>o SSRIs are the most commonly used pharmacotherapy in pediatric patients</td>
<td></td>
</tr>
<tr>
<td>o Clinical response should be assessed at 4-week intervals</td>
<td></td>
</tr>
</tbody>
</table>
Bipolar Disorder

Bipolar disorder (or manic-depressive disorder) is a mood disorder characterized by episodes of depression and mania. The prevalence of bipolar disorder is 0.4-1.4% across the world and 4% in the US. In general, bipolar disorder occurs more frequently in women than men and the average age of first onset of the disease is 25 years. Bipolar disorder is the most expensive mental health disorder, with costs reportedly double those of depression per affected individual. The economic burden of bipolar disorder in the US results from indirect costs due to lost productivity resulting from absenteeism and presenteeism in addition to direct healthcare costs. Bipolar disorder is also associated with an increased rate of substance abuse, legal and financial complications, relationship difficulties, self-harm and serious suicide attempts. Successful disease management and early treatment intervention can help to improve health outcomes and reduce the economic burden of bipolar disorders.

The depression–mania cycles associated with bipolar disorder are unpredictable with mania episodes typically emerging over a period of days to weeks and persisting up to several weeks or months. Mania is defined as clearly elevated moods with unrestrained behaviors lasting at least a week with at least 3 symptoms, which may include irritability, grandiosity, sleeplessness, pressure talking, distractibility or engaging in activities with a high potential for adverse consequences. Clinical evidence suggests anger and agitation are the most common symptoms in pediatric patients while disordered thought content occurs most frequently in adult patients. In severe mania, symptoms similar to those seen in schizophrenia, including delusions and paranoid thinking, may present. The depression episodes are defined as a persistent low mood including lack of positive affect and anhedonia causing impairment for greater than 2 weeks. In bipolar II disorder patients may lack the full criteria for mania and the recurrent depression episodes are instead separated by hypomania episodes with mild activation and increased energy.

Treatment of bipolar disorder includes psychotherapy and medication therapy (mood stabilizers and antidepressant medications). Mood stabilizers may include lithium, anticonvulsant therapies and antipsychotic agents. Lithium is typically the first-line agent and has demonstrated efficacy in the treatment of bipolar disorder with a response rate of 70-80%, beneficial effects within 1-2 weeks and prophylactic effects. Antidepressants are effective in treating breakthrough depression episodes but may precipitate mania or accelerate cycle frequency. Recent clinical evidence suggests mood stabilizers demonstrating efficacy for mania are also efficacious for mixed episodes, reducing the need for antidepressant therapy. Antipsychotic agents (such as aripiprazole, asenapine, cariprazine, lurasidone, olanzapine, quetiapine, risperidone, ziprasidone) may be used alone or in combination with other mood stabilizers or antidepressants to maintain

Guideline	Recommendations
If inadequate response, increase dose	0 Treatment should be continued for 6-12 months
Atypical antipsychotics, combined with SSRIs, are recommended as the treatment of choice for depressed psychotic pediatric patients	

Key: SSRI – selective serotonin reuptake inhibitor; SNRI – serotonin norepinephrine reuptake inhibitor; MAOI – monoamine oxidase inhibitor; TCA – tricyclic antidepressant.
mood stability, control agitation or treat bipolar disorder in patients experiencing loss of efficacy with lithium therapy.12,CDC, 2016 #2670

Clinical guidelines for the treatment of bipolar disorder include the WFSBP: Guidelines for Biological Treatment of Bipolar Disorder (2013)30-32, the American Psychiatric Association Practice Guideline for the Treatment of Patients with Bipolar Disorder (2002)33, NICE guideline for Bipolar Disorder: The Assessment and Management of Bipolar Disorder in Adults, Children and Young People in Primary and Secondary Care (2014)34 and AACAP: Practice Parameter for the Assessment and Treatment of Children and Adolescents with Bipolar Disorder (2007).35 See Table 4 for a summary of the most current guideline recommendations. In general, the guidelines recommend treatment for acute mania episodes and acute depression episodes and maintenance therapy in patients at high risk for recurrence or severe disease. For selection of pharmacotherapy in the treatment of acute mania or depression episodes, factors to consider include symptoms such as euphoric, mixed, psychotic, suicidality; severity; treatment history; adverse effect profile and patient preference.30-32

Medication therapy for acute mania episodes (lithium, valproate, aripiprazole, risperidone, ziprasidone, etc.) should be continued until full remission.30-32,34,35 If no response or only a partial response is achieved after 2 weeks of therapy, increase the dose of the medication or switch to another agent. Combination therapy is recommended in patients with continued treatment-resistance to a single agent. In patients with severe mania, clozapine or electroconvulsive therapy (ECT) may be indicated. Recommendations for antidepressant therapy in the treatment of acute depression episodes are inconsistent. In general, medication therapy for acute depression episodes (first- or second-generation antidepressants, lithium, quetiapine, olanzapine, lamotrigine, etc.) should be provided in an established treatment setting, in combination with behavioral therapy and regularly assessed for both efficacy and adverse effects. Before initiation of treatment for acute depression, all other potential medical causes should be ruled out and caffeine, alcohol and other substances should be discontinued. Of note, the full therapeutic effects of antidepressant therapy, lithium and lamotrigine may take several weeks; additional symptomatic treatment with benzodiazepines during the first few weeks of an acute bipolar episode may be required. Maintenance therapy is recommended in patients with three or more acute episodes, two acute episodes and a positive family history for bipolar disorder or in patients with severe disease.30-32,34,35

<table>
<thead>
<tr>
<th>Guideline</th>
<th>Recommendations</th>
</tr>
</thead>
</table>
| World Federation of Societies of Biological Psychiatry (WFSBP) guidelines for biological treatment of bipolar disorder (2013)30-32 | Treatment of an acute mania episode, any one of the following:
• aripiprazole 15-30 mg daily
• lithium 600-1200 mg daily (serum level 0.8-1.3 mmol, only if chronic treatment is being considered)
• risperidone 2-6 mg daily
• valproate 1200-3000 mg daily (loading dose 20-30 mg/kg; serum level 75-100 mg; not preferred in women of childbearing age)
• ziprasidone 80-160 mg daily |
| | Treatment of acute depressive episode:
• best evidence: quetiapine 300-600 mg daily |
<table>
<thead>
<tr>
<th>Guideline</th>
<th>Recommendations</th>
</tr>
</thead>
</table>
| National Institute for Health and Clinical Excellence (NICE) Bipolar Disorder: The Assessment and Management of Bipolar Disorder in Adults, Children and Young People in Primary and Secondary Care (2014) | - good evidence: fluoxetine/olanzapine combination therapy
- fair evidence: bupropion, fluoxetine, imipramine, sertraline, tranylcypromine, venlafaxine in combination with a antimanic agent; lithium monotherapy; lithium in combination with lamotrigine

Maintenance treatment, best evidence for:
- aripiprazole
- lamotrigine
- lithium
- quetiapine |

| American Psychiatric Association (APA): Practice Guideline for the Treatment of Patients with Bipolar Disorder (2002)**33** | **Adults**
Mania
- haloperidol, olanzapine, quetiapine or risperidone
- lithium alone or in combination with haloperidol, olanzapine, quetiapine or risperidone
Depression
- fluoxetine/olanzapine, quetiapine, olanzapine, lamotrigine
- lithium alone or in combination with fluoxetine/olanzapine, quetiapine, olanzapine, lamotrigine

Maintenance Therapy
- lithium alone or in combination valproate
- valproate, olanzapine, quetiapine

Precautions
- There is an increased risk for side effects in young patients
 - Antipsychotic treatment is not recommended for longer than 12 weeks in young patients
- For treatment of depression in young patients, a structured psychological intervention for at least 3 months is recommended
- Lithium and/or valproate should not be initiated in primary care
- Do not use lamotrigine for acute mania or mixed episode |

| **Acute manic or mixed episodes** | - Adjunctive antipsychotic therapy should be considered in manic or mixed manic episodes with psychotic features
 - Second-generation agents are recommended over first-generation agents due to side effect profile |

Acute depressive episodes
- Adjunctive antipsychotic therapy or electroconvulsive therapy is recommended in acute depressive episodes with psychotic features

Maintenance
- Adjunctive antipsychotic therapy should be closely monitored, reassessed and slowly tapered, if indicated

Acute rapid cycling
- Combination therapy with a second-generation antipsychotic may be indicated |

This guideline is more than 5 years old and has not yet been updated to ensure that it reflects current knowledge and practice”
Veterans Affairs/Department of Defense (VA/DoD): Clinical Practice Guideline for Management of Bipolar Disorder in Adults (2010)\(^6\)

<table>
<thead>
<tr>
<th>Stage</th>
<th>Medications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypomania or mania</td>
<td></td>
</tr>
<tr>
<td>Stage 1</td>
<td>Euphoric symptoms: lithium, valproate, aripiprazole, quetiapine, risperidone, ziprasidone</td>
</tr>
<tr>
<td>Mixed symptoms</td>
<td>Valproate, aripiprazole, risperidone, ziprasidone</td>
</tr>
<tr>
<td>Stage 1b</td>
<td>Olanzapine and carbamazepine are alternatives</td>
</tr>
<tr>
<td>Stage 2</td>
<td>Combination therapy with two: lithium, valproate, olanzapine, quetiapine, risperidone, or ziprasidone (not 2 antipsychotics)</td>
</tr>
<tr>
<td>Stage 3</td>
<td>A different combination than in Stage 2, with additional options: carbamazepine, oxcarbazepine, aripiprazole, a first-generation antipsychotic</td>
</tr>
<tr>
<td>Stage 4</td>
<td>Clozapine or a 3-drug combination including lithium, an anticonvulsant mood stabilizer (valproate, carbamazepine, or oxcarbazepine) an atypical antipsychotic agent</td>
</tr>
</tbody>
</table>

Depression

Stage 1

Lamotrigine monotherapy for patients without a recent and/or severe history of mania OR lamotrigine plus a mood stabilizer

Stage 2

Quetiapine monotherapy or olanzapine/fluoxetine combination treatment

Stage 3

Evidence-based medicine is limited

Notes:

Treatment response should be evaluated at 4 to 8 weeks and periodically until full remission

Patients who have failed monotherapy for mania: consider switching to another monotherapy or combining a non-antipsychotic mood stabilizer (lithium or valproate) with a second generation antipsychotic

Treatment of severe mania or mixed episode: clozapine with valproate or lithium

Treatment of severe depression: clozapine

<table>
<thead>
<tr>
<th>Stage</th>
<th>Medications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypomania or mania</td>
<td></td>
</tr>
<tr>
<td>Stage 1</td>
<td>Euphoric symptoms: lithium, valproate, aripiprazole, quetiapine, risperidone, ziprasidone</td>
</tr>
<tr>
<td>Mixed symptoms</td>
<td>Valproate, aripiprazole, risperidone, ziprasidone</td>
</tr>
</tbody>
</table>

Depression

Stage 1

Lamotrigine monotherapy for patients without a recent and/or severe history of mania OR lamotrigine plus a mood stabilizer

Stage 2

Quetiapine monotherapy or olanzapine/fluoxetine combination treatment

Stage 3

Evidence-based medicine is limited
Attention Deficit Disorder

Attention-deficit/hyperactivity disorder (ADHD) is a neurobehavioral disorder characterized by inattention, hyperactivity, and impulsivity. ADHD is most often a disorder of childhood that may continue into adulthood. According to a National Survey of Children’s Health (2010-2012), over 10% (~6.4 million) of US school-aged children have a diagnosis for ADHD and this number continues to rise with an increase of 42% reported between 2003 and 2011. In general, ADHD is diagnosed more frequently in school-aged boys (1 in 5) than in school-aged girls (1 in 11) and the average age of first onset of the disease is 7 years. The prevalence of ADHD in US adults is estimated to be 4.1%. The economic burden of ADHD in the US (reaching $52 billion in 2005) results from the combined costs associated with the treatment of patients and lost productivity for patients and family members. In addition, ADHD frequently occurs in combination with other mental health disorders (up to ~50%) including aggression-related disorders (Oppositional Defiant Disorder or Conduct Disorder), learning ability disorders, depression and anxiety, which may further contribute to increased costs and morbidity. Increasing mental health disorder education and screening can help to improve patient outcomes and reduce overall costs.

ADHD is defined as a mental disorder with inattention (difficulty sustaining focus and disorganized not due to incomprehension), hyperactivity (restlessness and excessive movement/talking) and/or impulsivity (hasty actions with high potential for harm and/or inability to delay gratification) that result in difficulty functioning at school and at home. ADHD may be divided into three different types: predominantly inattentive, predominantly hyperactive-impulsive, and combined type.
or combined presentation with symptoms of both types equally exhibited. There is no single test to diagnose ADHD. In general, diagnosis requires symptoms persisting at least 6 months including 6 or more symptoms of inattention and/or hyperactivity-impulsivity for children <16 or 5 or more symptoms for adolescents and adults >17. Symptoms of inattention may include failure to pay close attention to details, making careless mistakes, trouble maintaining attention on a single task, inability to listen, failure to finish duties, trouble organizing tasks, avoids tasks that require mental effort over a long period of time, frequently losing things, and easily becoming distracted or forgetful. Symptoms of hyperactivity-impulsivity may include fidgeting, trouble remaining seated, feeling restless (may run or climb), trouble participating in quiet activities, "on the go," talking excessively, speaking out of turn, trouble waiting for turn, and often interrupting or intruding. For diagnosis, symptoms should be present before age 12, present in two or more settings and should reduce the quality of school/work and social functioning.

Treatment of ADHD should include a combination of behavior therapy and medication therapy. For preschool-aged children, behavior therapy alone is recommended as first line. Behavioral therapies include teaching the child new behaviors to replace ones that cause disruptions to activities of daily living in addition to instructing the child’s parents to teach and enforce skills to help the child manage their behavior. Medication therapy may include stimulant and nonstimulant agents. Stimulants, including amphetamine and methylphenidate agents, are the most widely used ADHD treatments, are fast-acting and are efficacious in reducing ADHD symptoms. Nonstimulant agents, including atomoxetine (Strattera®), guanfacine, and clonidine are not as fast-acting but are long-acting and may be associated with fewer adverse effects. Often it requires multiple trials of different medications at various doses to find the optimal drug therapy in children with ADHD. Effective treatment plans should include both behavioral and medication therapy, close monitoring and frequent follow-ups.

Clinical guidelines for the treatment of attention-deficit/hyperactivity disorder include the American Academy of Child and Adolescent Psychiatry guidelines on Attention-Deficit/Hyperactivity Disorder (2007), the American Academy of Pediatrics guidelines on Attention-Deficit/Hyperactivity Disorder (2011) and the National Collaborating Centre for Mental Health NICE guidelines on Attention Deficit Hyperactivity Disorder (2008). See Table 5 for a summary of the most current guideline recommendations. In general, the guidelines recommend treatment with medication and behavioral therapy in children and adolescents with ADHD. In preschool-aged children, guidelines recommend behavioral therapy alone as first-line treatment of ADHD. In adults, guidelines recommend medication therapy alone as first-line treatment of ADHD. In general, evidence suggests stimulants are more efficacious than nonstimulants in the treatment of ADHD. Choice of medication therapy usually includes a methylphenidate agent as first-line, atomoxetine in patients with underlying anxiety disorder or risk for substance abuse and an amphetamine agent in patients with methylphenidate-resistant disease. Some evidence suggests that clonazepam in addition to a stimulant agent may be helpful in children with only a partial response to stimulant monotherapy. All patients should receive a well-thought-out treatment plan with close follow-up and appropriate titration of medication therapy.
Table 5: Current Clinical Treatment Practice Guidelines for Attention Deficit Disorder

<table>
<thead>
<tr>
<th>Guideline</th>
<th>Recommendations</th>
</tr>
</thead>
</table>
| American Academy of Child and Adolescent Psychiatry guidelines on Attention-Deficit/Hyperactivity Disorder (2007)\(^\text{46}\) | Initial medication therapy should be with a trial of an agent with a labeled indication for the treatment of ADHD by the FDA: dextroamphetamine, methylphenidate, mixed salts amphetamine or atomoxetine:
 - Stimulants are highly efficacious
 - Methylphenidate and amphetamine agents are equally efficacious in the treatment of ADHD
 - Long-acting formulations are equally efficacious as immediate-release agents but may be more convenient
In patients with treatment-refractory disease, behavior therapy and/or the use of medications not approved by the FDA for the treatment of ADHD (bupropion or tricyclic antidepressants) should be considered
All patient should be monitored for treatment-emergent side effects and assessed periodically for treatment efficacy:
 - Patients treated with medication for ADHD should have height and weight monitored throughout treatment
 - Treatment of ADHD should continue as long as symptoms remain present and cause impairment |
| American Academy of Pediatrics guidelines on Attention-Deficit/Hyperactivity Disorder (2011)\(^\text{47}\) | Recommendations vary depending on the patient’s age:
 - Preschool-aged children (4–5 years of age)
 - Evidence-based parent- and/or teacher-administered behavior therapy as the first line of treatment
 - Methylphenidate if the behavior interventions do not provide significant improvement and there is moderate-to-severe continuing disturbance in functioning
 - Elementary school–aged children (6–11 years of age)
 - FDA-approved medications for ADHD and/or evidence-based parent- and/or teacher-administered behavior therapy, preferably both
 - Evidence is strong for stimulant medications and sufficient but less strong for atomoxetine, extended-release guanfacine and extended-release clonidine (in descending order of strength of evidence)
 - Adolescents (12-18 years of age)
 - FDA-approved medications for ADHD and/or evidence-based parent- and/or teacher-administered behavior therapy, preferably both
 - Medication therapy in all patient age groups should titrated to achieve maximum benefit with minimum adverse effects |
| National Collaborating Centre for Mental Health NICE guidelines on Attention Deficit Hyperactivity Disorder (2008)\(^\text{48}\) | Treatment for children and young people:
 - Parent-training/education programs are first-line for pre-school children; drug treatment is not recommended for pre-school children
 - Group-based parent-training/education programs are first-line for school-age children and young people with moderate impairment
 - Medication therapy is usually first-line for school-age children and young people with severe symptoms and impairment or for those with moderate impairment who have not responded to parent-training/education programs or group psychological treatment
 - Drug treatment should only be initiated by an ADHD specialist
 - Drug therapy includes: methylphenidate, atomoxetine and dexamphetamine
 - Methylphenidate for ADHD without significant comorbidity
 - Methylphenidate for ADHD with comorbid conduct disorder
 - Methylphenidate or atomoxetine when tics, Tourette’s syndrome, anxiety disorder, stimulant misuse or risk of stimulant diversion are present |
Seasonal Affective Disorder

Seasonal affective disorder (SAD) is a type of depressive disorder characterized by a serious mood shift that occurs during the fall and winter months. Symptoms associated with the mood shift may include feelings of hopelessness or worthlessness, irritability, loss of interest in activities, fatigue, difficulty concentrating and/or thoughts of death or suicide. According to the National Institute of Mental Health, SAD affects over 10 million Americans. In general, SAD occurs more frequently in women than men and the average age of first onset of the disorder is 20 years. Seasonal affective disorder can affect quality of life and up to 6% of those diagnosed with SAD will require hospitalization. SAD is thought to be associated with the amount of daylight.
available and the incidence increases in regions furthest away from the equator. Light therapy is considered first-line treatment for SAD; unfortunately, up to half of those diagnosed with SAD do not respond to light therapy. Recent clinical evidence suggests Vitamin D supplementation may be as effective as light therapy in the treatment of SAD but the available evidence is mixed. Short-term medication therapy with an antidepressant agent in combination with CBT may also be beneficial in the treatment of SAD. The SSRIs and bupropion are labeled for use in the treatment of seasonal affective disorder. Other suggested activities to reduce the symptoms of SAD include healthy sleep habits, nutritious meals, medication adherence, exercise and avoiding alcohol or illegal drugs. Patients should be counseled to watch for early signs of worsening depression and have a well-thought-out treatment plan in place for the recurrence and/or worsening of the disorder.51-53

Pharmacology

The exact mechanism of action of each of the serotonergic agents is not fully known. In general, the agents block the uptake and reuptake of serotonin and noradrenergic neurotransmitters, resulting in increased and prolonged serotonergic neurotransmission.4,5 Initially, stimulation of autoreceptors on serotonergic terminals results in reduced serotonin synthesis and release, resulting in a "therapeutic lag" of the antidepressant effects. With repeated administration, a gradual down-regulation and desensitization of the serotonergic autoreceptors occurs and measurable therapeutic responses are detected after 3-4 weeks of medication therapy. In addition, studies demonstrate that long-term effects of antidepressant therapy result in additional adaptive and regulatory mechanisms that further enhance the effectiveness of antidepressant therapy. Similar to the "therapeutic lag" seen with initiation of antidepressant therapy, adverse effects reported with the agents occur more frequently and with greater severity during the first few weeks of therapy. After 2-4 weeks of ongoing therapy, adverse effects are reduced or disappear.7,8

Atomoxetine: The mechanism of action of atomoxetine is selective inhibition of the reuptake of norepinephrine. Atomoxetine does not appear to exhibit direct action on the release or reuptake of serotonin or any of the other neurotransmitters. Its peak efficacy develops over 2–6 weeks. It is initiated at a dose of 0.5 mg/kg/day and then increased to 1.2 mg/kg/day in 2 weeks.33

Bupropion: The mechanism of action of bupropion is related to weak inhibition of norepinephrine and dopamine uptake in the neuron.6,7 Bupropion is an aminoketone antidepressant; it is structurally unique from other antidepressants and does not appear to inhibit the reuptake of serotonin. Active metabolites of bupropion further inhibit the reuptake of norepinephrine. Bupropion is eliminated through both hepatic and renal routes and patients with severe hepatic or renal disease should receive a dose of no more than 150 mg every other day5

Lithium: The exact mechanism of action of lithium in the treatment of mood disorders is not well understood but it is thought to be associated with alteration of cation transport in nerve and muscle cells, reuptake of serotonin and/or norepinephrine in neurons and inhibition of second messenger systems in the phosphatidylinositol cycle.9,10 Pharmacological evidence also suggests lithium produces neuroprotective effects by “increasing glutamate clearance, inhibiting apoptotic glycogen synthase kinase activity, increasing the levels of antiapoptotic protein Bcl-2 and enhancing the expression of neurotropic factors, including brain-derived neurotrophic factor.”54
Lithium is a small monovalent cation similar to sodium in its properties. It was first used in the 19th century in the treatment of gout, briefly used as a sodium chloride substitute in patients with hypertension in the 1940’s and found to be effective as a mood stabilizer in 1949 when it became the treatment of choice in bipolar disorder. Serum lithium levels may be obtained starting 5 days after initiation of treatment and regularly repeated throughout therapy to assess therapeutic levels, optimize efficacy and reduce risk of adverse effects.

Mirtazapine: The mechanism of action of mirtazapine is thought to be associated with central presynaptic alpha-2 adrenergic antagonist effects resulting in increased release of serotonin and norepinephrine. Mirtazapine does not appear to inhibit the reuptake of serotonin or norepinephrine, like other serotonergic antidepressants. It is a potent antagonist of serotonin receptors (specifically 5-HT2, 5-HT3), H1 histamine receptors and muscarinic receptors, which may play a part in the adverse effect profile of the drug. Mirtazapine elimination half-life is 16-30 hours, dose changes should not occur more often than every 1-2 weeks, and clearance is decreased in the elderly population and in patients with severe renal or hepatic disease. Mirtazapine is also usually given in the evening due to its sedating effects.

Nefazodone: The mechanism of action of nefazodone is the inhibition of serotonin and norepinephrine reuptake in the neuron. Nefazodone is structurally similar to trazodone and appears to block 5-HT2 serotonin and alpha-1 receptors, which may be associated with postural hypotension. Nefazodone has a short half-life, is associated with rare but serious liver injury and is no longer commonly used by clinicians for the treatment of depression.

Trazodone: The primary mechanism of action of trazodone is inhibition of the reuptake of serotonin. Trazodone also causes adrenoreceptor subsensitivity, produces changes in presynaptic serotonin adrenoreceptors and significantly blocks H1 histamine and alpha-1 adrenergic receptors. Trazodone has a short half-life and undergoes extensive hepatic metabolism, limiting its bioavailability. Trazodone is most commonly used in current practice as a hypnotic in patients with insomnia because it is highly sedating and does not produce tolerance or dependence like other hypnotic agents.

Vilazodone: The mechanism of action of vilazodone is tied to inhibition of serotonin reuptake and partial agonism at serotonin 5-HT1A receptors with little to no effect on norepinephrine or dopamine neurotransmitters. Of note, evidence suggests 5-HT1A receptor activity may be altered in patients with depression and anxiety, which may affect vilazodone efficacy. Vilazodone is well absorbed (which is increased with a fatty meal) and is extensively metabolized by cytochrome P450 enzymes (primarily CYP3A4).

Vortioxetine: The mechanism of action of vortioxetine is not well understood but appears to be tied to the selective reuptake of serotonin, agonistic activity at 5-HT1A receptors and antagonistic activity at 5-HT3 receptors. Vortioxetine does not appear to have any direct effect on norepinephrine or dopamine neurotransmitters. Vortioxetine is extensively metabolized by cytochrome P450 enzymes (primarily CYP2D6), is tightly protein-bound and exhibits dose-proportional pharmacokinetics.
Table 6. Pharmacokinetic Properties of the Miscellaneous Serotonergic Agents\(^9,10,57\)

<table>
<thead>
<tr>
<th>Agent</th>
<th>Action</th>
<th>Distribution</th>
<th>Metabolism</th>
<th>Excretion</th>
<th>Half-life elimination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antidepressants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bupropion</td>
<td>Absorption: Rapid Onset of action: 1 to 2 weeks Duration of action: 1 to 2 days Half-life: 3 to 4 hours</td>
<td>(V_d): ~20 to 47 L/kg Protein binding: 84%</td>
<td>Extensively hepatic via CYP2B6 to hydroxybupropion; non-CYP-mediated metabolism to erythrohydrobupropion and threohydrobupropion. Metabolite activity ranges from 20% to 50% potency of bupropion. Bupropion also undergoes oxidation to form the glycine conjugate of meta-chlorobenzoic acid, the major urinary metabolite</td>
<td>Urine (87%, primarily as metabolites) Feces (10%, primarily as metabolites)</td>
<td>~21 hours after chronic dosing (range: 12 to 30 hours); Metabolites (after a single dose): Hydroxybupropion: 20 ± 5 hours; Erythrohydrobupropion: 33 ± 10 hours; Threohydrobupropion: 37 ± 13 hours</td>
</tr>
<tr>
<td>Mirtazapine</td>
<td>Absorption: Rapid and complete Bioavailability: ~50% Time to peak, serum: ~2 hours</td>
<td>(V_d): unknown Protein binding: ~85%</td>
<td>Extensively hepatic via CYP1A2, 2D6, 3A4 and via demethylation and hydroxylation</td>
<td>Urine (75%) and feces (15%) as metabolites</td>
<td>20 to 40 hours; increased with renal or hepatic impairment</td>
</tr>
<tr>
<td>Serotonin Modulators</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nefazodone</td>
<td>Absorption: Rapid; well absorbed; food delays absorption by ~20% Bioavailability: 20% (variable); food decreases bioavailability by ~20%; AUC increased by 25% in patients with cirrhosis of the liver Time to peak, serum: Children and Adolescents: 0.5 to 1 hour Adults: 1 hour</td>
<td>(V_d): 0.22 to 0.87 L/kg Protein binding: >99%</td>
<td>Hepatic by n-dealkylation and aliphatic and aromatic hydroxylation to at least three metabolites: Triazoledione, hydroxynefazodone (active), and m-chlorophenylpiperazine (mCPP; active)</td>
<td>Primarily urine (~55%; as metabolites); feces (~20% to 30%)</td>
<td>Children: 4.1 hours Adolescents: 3.9 hours adults: Parent drug: 2 to 4 hours; active metabolites: 1.4 to 8 hours</td>
</tr>
<tr>
<td>Agent</td>
<td>Action</td>
<td>Distribution</td>
<td>Metabolism</td>
<td>Excretion</td>
<td>Half-life elimination</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>---------------------</td>
<td>---</td>
<td>---</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Trazodone</td>
<td>Absorption: Well absorbed; Extended release: C_{max} increases ~86% when taken shortly after ingestion of a high-fat meal compared to fasting conditions. Onset of action: Therapeutic (antidepressant): Up to 6 weeks; sleep aid: 1 to 3 hours. Time to peak, serum: 30 to 100 minutes; delayed with food (up to 2.5 hours)</td>
<td>V_d: ~0.84 L/kg $\text{Protein binding: 85% to 95%}$</td>
<td>Hepatic via CYP3A4 (extensive) to an active metabolite (mCPP)</td>
<td>Primarily urine (74%, <1% excreted unchanged); secondarily feces (~21%)</td>
<td>5 to 9 hours, prolonged in obese patients</td>
</tr>
<tr>
<td>Vilazodone</td>
<td>Bioavailability: 72% (with food); blood concentrations (AUC) may be decreased ~50% in the fasted state. Time to peak, serum: 4 to 5 hours</td>
<td>V_d: unknown $\text{Protein binding: ~96% to 99%}$</td>
<td>Extensively hepatic, via CYP3A4 (major pathway) and 2C19 and 2D6 (minor pathways)</td>
<td>Urine (1% as unchanged drug); feces (2% as unchanged drug)</td>
<td>~25 hours</td>
</tr>
<tr>
<td>Vortioxetine</td>
<td>Bioavailability: 75% Time to peak: 7-11 hours.</td>
<td>V_d: 0.26 L/kg $\text{Protein binding: 98%}$</td>
<td>Hepatic primarily through oxidation via CYP450 isoenzymes, primarily CYP2D6, and subsequent glucuronic acid conjugation to an inactive carboxylic acid metabolite</td>
<td>Urine (59%); feces (26%)</td>
<td>~66 hours</td>
</tr>
<tr>
<td>Agent</td>
<td>Action</td>
<td>Distribution</td>
<td>Metabolism</td>
<td>Excretion</td>
<td>Half-life elimination</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
<td>---------------------------------------</td>
<td>---</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Central Nervous System Agents</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atomoxetine</td>
<td>Absorption: Rapid Bioavailability: 63% in extensive metabolizers; 94% in poor metabolizers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Time to peak, plasma: 1-2 hours; delayed 3 hours by high-fat meal</td>
<td>V<sub>D</sub>: 0.85 L/kg</td>
<td>Hepatic, via CYP2D6 and CYP2C19; forms metabolites (4-hydroxyatomoxetine, active, equipotent to atomoxetine; N-desmethylatomoxetine, limited activity); Note: CYP2D6 poor metabolizers have atomoxetine AUCs that are ~10-fold higher and peak concentrations that are ~fivefold greater than extensive metabolizers; 4-hydroxyatomoxetine plasma concentrations are very low (extensive metabolizers: 1% of atomoxetine concentrations; poor metabolizers: 0.1% of atomoxetine concentrations)</td>
<td>Urine (80%, as conjugated 4-hydroxy metabolite; <3% is excreted unchanged); feces (17%)</td>
<td>5 hours (up to 24 hours in poor metabolizers); Active metabolites: 4-hydroxyatomoxetine: 6-8 hours; N-desmethylatomoxetine: 6-8 hours (34-40 hours in poor metabolizers)</td>
</tr>
<tr>
<td>Antimanic Agents</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lithium</td>
<td>Absorption: Rapid and complete Bioavailability: 80% to 100% Time to peak, serum: Immediate release: ~0.5 to 3 hours; Extended release: 2 to 6 hours; Solution: 15 to 60 minutes</td>
<td>V<sub>D</sub>: Initial: 0.307 L/kg; V<sub>Dss</sub>: 0.7 to 1 L/kg; decreased in elderly patients Protein binding: Not protein bound</td>
<td>Not metabolized</td>
<td>Urine (primarily; unchanged drug); sweat, saliva, and feces (negligible amounts)</td>
<td>18 to 36 hours; prolonged in elderly patients (~28.5 hours)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key: Tmax: time to max concentration; BA: bioavailability; Pb: protein binding; V_D: volume of distribution; IM: intramuscular; ER: extended release; IR: immediate release; V_{Dss}: volume of distribution at steady state; CYP: cytochrome P450 (enzyme); AUC: area under the curve
Methods

A literature search was conducted to identify articles addressing each key question, searching the MEDLINE database, the Cochrane Library and reference lists of review articles. For the clinical efficacy section, only clinical trials published in English and indexed on MEDLINE, evaluating efficacy of the miscellaneous serotonergic agents are included. Trials evaluating the agents as monotherapy or combination therapy where adjunctive medications remained constant throughout the trial are included. Non-comparative and placebo-controlled trials and trials comparing monotherapy with combination regimens are excluded. The following reports were excluded (note: some were excluded for more than 1 reason):

- Individual clinical trials that evaluated endpoints other than reduction of symptoms, such as pharmacologic characteristics, 105-109 adverse effects, 72,110-124 or quality-of-life. 91
- Individual trials comparing the miscellaneous serotonergic agents in dose-finding studies or in healthy volunteers. 125-133
- Individual clinical trials evaluating formulations or indications not currently approved in the US or clinical trials with unavailable reports. 86,97,134-159

Clinical Efficacy

Atomoxetine

Atomoxetine is labeled for use in the treatment of ADHD. 9 An Oregon Health and Science University Drug Class Review on Pharmacological Treatments for ADHD was published in October 2009. 160 The drug class review includes a summary of the guideline recommendations, systematic reviews and comparative clinical trials evaluating the safety and efficacy of the agents. When evaluating treatments for ADHD, it is important to consider both patient age and dosage form. The Oregon Review evaluated studies in children, adolescents and adults. Studies in children favor efficacy compared to placebo with fair evidence for stimulant drugs and poor evidence for atomoxetine. Atomoxetine was compared to both immediate release and extended release stimulants. The evidence weakly suggests that atomoxetine is comparable in efficacy to immediate release stimulants and inferior to extended release formulations. Fewer studies have been done in adolescents than in younger children. The level of evidence in these studies is poor, but the efficacy of different agents appears to follow the same trends as in children. The efficacy of atomoxetine was not consistently superior to placebo in adults.

One Cochrane Review and five additional systematic reviews and meta-analyses evaluating the efficacy of atomoxetine have been published since 2009. Pringsheim et al161 published a Cochrane Review of pharmacological treatments for ADHD in children with comorbid tic disorders in 2011. The review identified and evaluated 8 randomized controlled trials. According to the available evidence, atomoxetine, clonidine, desipramine, dextroamphetamine, guanfacine and methylphenidate were efficacious in treating symptoms of ADHD. Guanfacine, desipramine, methylphenidate, clonidine and the combination of methylphenidate and clonidine were also efficacious in reducing tic symptoms. High-dose methylphenidate and high-dose dextroamphetamine may be associated with worsening tic symptoms.
Cunill et al162 published a systematic review evaluating the efficacy of atomoxetine in adult patients with ADHD in 2013. Twelve studies of 3,375 patients were identified for evaluation. According to the analysis, atomoxetine therapy was associated with increased treatment discontinuation rates compared to placebo. A second systematic review of 5 randomized controlled trials and 10 open-label extension studies of 3,176 adult patients with ADHD was published in 2012.163 Methylphenidate agents, amphetamine agents and atomoxetine were all found to be more efficacious than placebo but no differences in efficacy were reported between treatment groups. Adverse events reported with atomoxetine therapy included increased blood pressure, increased heart rate, dizziness, nausea, dry mouth, fatigue, decreased appetite, urinary hesitation and erectile dysfunction.

The safety and efficacy of atomoxetine therapy in pediatric patients was evaluated in a meta-analysis of 25 double-blind randomized controlled trials (2014). Schwartz et al,164 reported increased rates of efficacy (reduced ADHD symptoms) as well as improved quality-of-life and reduced oppositional defiant disorder symptoms with atomoxetine therapy compared to placebo. Gastrointestinal, central nervous system (CNS), anorexia and fatigue were reported more frequently with atomoxetine therapy although no differences in the rate of serious adverse events were reported between the treatment group and placebo. Roskell et al,165 published a systematic review and meta-analysis of 32 randomized controlled trials evaluating the efficacy of methylphenidate, dexamphetamine and atomoxetine in children with ADHD (2014). According to the analysis, lisdexamfetamine therapy may be more effective in reducing ADHD symptoms than atomoxetine but may also be associated with increased adverse-event discontinuation rates. Another large meta-analysis of 28 randomized, controlled trials evaluating the efficacy of ADHD treatments in pediatric patients was published in 2015.166 According to this analysis, lisdexamfetamine therapy was associated with high rates of efficacy (reducing symptoms) while atomoxetine and methylphenidate were associated with moderate rates of efficacy and bupropion therapy was associated with low rates of efficacy. Lisdexamfetamine therapy was associated with the highest treatment discontinuation rates compared to the other treatment groups.

Overall, atomoxetine is more effective than placebo in the treatment of ADHD in children, but evidence comparing atomoxetine to other treatments is inconsistent and suggests reduced rates of efficacy for atomoxetine across all treatment age groups.

Bupropion
Bupropion is labeled for use in the treatment of depression, SAD, and smoking cessation. Six Cochrane Reviews, one Cochrane update, six additional systematic reviews & meta-analyses and one comparative clinical trial (bupropion vs trazodone) are available for evaluation of bupropion therapy.

Gartlehner et al167 published a Cochrane Review of second-generation antidepressants in the treatment of seasonal affective disorder in adults. A total of only 4 clinical trials (n=1,100) were identified for evaluation. According to the limited evidence, bupropion XL demonstrated efficacy in the prevention of depressive episodes in patients with SAD but was associated with increased rates of headache, insomnia and nausea compared to placebo. A Cochrane update including two new reports and review of 11 others evaluating interventions used in smoking cessation was published in 2013.103 According to the update, adding mood management (with
bupropion, a tricyclic antidepressant, selective serotonin inhibitor, etc.) to behavioral support (group therapy, individual counseling, internet/phone-based interventions, etc.) increases treatment success in patients with current or past depression. In addition, the update confirms evidence for the safety of bupropion and varenicline and the benefits of behavioral support in pregnancy. In 2015, Coleman et al.168 published a Cochrane Review evaluating smoking cessation therapies in pregnancy. According to the evidence, nicotine replacement therapy with behavioral support is efficacious in reducing smoking during pregnancy; however, the safety of this intervention is not well understood. Insufficient evidence is available to determine the fetal impacts of either bupropion or varenicline in pregnancy. In 2013, Tsoi et al.169 published a Cochrane Review evaluating smoking cessation therapies in patients with schizophrenia. According to the evidence, treatment with bupropion leads to increased rates of smoking abstinence without jeopardizing the mental state of patients with schizophrenia while treatment with varenicline lead to increased rates of smoking abstinence with mixed effects on mental state. No reports of serious adverse events including seizures were reported with bupropion treatment.

A 2015 Cochrane Review evaluating interventions for smokeless tobacco use cessation reported varenicline, nicotine lozenges and behavioral support are also efficacious in this patient population.170 According to limited evidence, pooled results from two bupropion clinical trials did not demonstrate continued efficacy at six months. A Cochrane Review of antidepressants for smoking cessation published in 2014 reported bupropion and nortriptyline are efficacious in long-term smoking cessation.171 Adverse events reported with bupropion and nortriptyline are rarely serious or lead to discontinuation. According to the report, both SSRIs (e.g. fluoxetine) and MAOIs fail to demonstrate efficacy in smoking cessation. In addition, a Cochrane Review of interventions for waterpipe smoking cessation was published in 2015 (and subsequent non-Cochrane Review update published 2016).172,173 According to the evidence, two clinical trials demonstrated significantly higher quit rates in treatment groups receiving bupropion with behavioral support compared to placebo.

A review of smoking cessation intervention reviews was completed in 2015 for the U.S. Preventive Services Task Force.174 According to the report, behavioral support, nicotine replacement therapy, bupropion and varenicline demonstrated efficacy for smoking cessation. Behavioral therapy in combination with pharmacotherapy increased cessation rates by 82% compared to minimal intervention or usual care. Electronic cigarettes did not demonstrate efficacy and none of the pharmacological interventions were associated with cardiovascular adverse effects. Weiner et al.175 published a meta-analysis of four clinical studies evaluating the efficacy of bupropion SR when added to group therapy for smoking cessation in patients with schizophrenia. According to the analysis, bupropion is tolerable and efficacious in the treatment of cigarette smoking in schizophrenia when compared to placebo.

Maneeton et al.176 published a small meta-analysis of 3 randomized, controlled trials (n=1117) evaluating the efficacy and venlafaxine and bupropion in the treatment of depression. According to the limited evidence, bupropion XL demonstrated similar rates of safety and efficacy as venlafaxine XR in adult patients with major depressive disorder. Two additional analyses of bupropion in the treatment of depression are available. A pooled analysis of 7 double-blind, randomized, controlled trials evaluating the efficacy of bupropion and SSRIs in the treatment of depression was published in 2007.177 According to the report, no differences in response time and
remission rate were reported between bupropion and SSRI treatment groups. A second pooled analysis of ten double-blind, randomized studies evaluating the efficacy of bupropion and SSRIs in the treatment of concurrent depression with anxiety was published in 2008. According to the report, response rates were increased with SSRI therapy compared to bupropion therapy in the treatment of anxious depression (65.4% vs. 59.4%, p=0.03). No differences in efficacy were reported between the treatment groups in patients with depression and moderate to low levels of anxiety. One meta-analysis evaluating the efficacy of bupropion in the treatment of SSRI-resistant depression is available. Papakostas et al. published the analysis of four clinical trials (n=1496) in 2008. According to the report, patients switched to a non-SSRI antidepressant (bupropion, mirtazapine, venlafaxine) demonstrated increased remission rates compared to those switched to a second SSRI (28.0% vs 23.5%, p=0.007). No differences in efficacy were reported between the individual non-SSRI agents.

A large meta-analysis of 28 randomized, controlled trials evaluating the efficacy of ADHD treatments in pediatric patients was published in 2015. According to this analysis, lisdexamfetamine therapy was associated with high rates of efficacy (reducing symptoms) while atomoxetine and methylphenidate were associated with moderate rates of efficacy and bupropion therapy was associated with low rates of efficacy. Lisdexamfetamine therapy was associated with the highest treatment discontinuation rates compared to the other treatment groups. A systematic review of meta-analyses evaluating the efficacy of pharmacotherapy and psychotherapy in the treatment of ADHD in adults was published in 2013. Moriyama et al. reported increased rates of efficacy with bupropion therapy when compared to placebo but reduced rates of efficacy when compared to stimulants.

Bupropion was compared to trazodone in one double-blind, randomized, controlled trial of 124 patients with moderate-severe depression. Weisler et al. randomized patients to receive either bupropion 225-450 mg/day (n=63) or trazodone 150 to 400 mg/day (n=61) for 6 weeks. At the end of the study period, symptoms were improved 58% in the bupropion treatment group and 46% in the trazodone treatment group and weight changes were reported as a 2.5 lb loss in the bupropion treatment group and 1.2 lb gain in the trazodone treatment group (p=NS for both outcomes). Increased rates of anorexia and anxiety were reported in the bupropion treatment group and increased rates of somnolence and edema were reported in the trazodone treatment group (p<0.05).

Overall, this evidence suggests bupropion may be an effective treatment option in patients with depression, drug-resistant depression, seasonal affective disorder and smoking cessation.

Lithium

Lithium is labeled for use in the treatment of bipolar disorder. Three Cochrane Reviews and four additional systematic reviews and meta-analyses evaluating the efficacy of lithium are available for evaluation.

One Cochrane Review evaluating the efficacy of lithium in the maintenance treatment of mood disorders was published in 2001. Burgess et al. evaluated nine studies (n=825) comparing lithium to placebo. According to the evidence, lithium therapy was associated with reduced rates of relapse in bipolar disorder when compared to placebo. In addition, social functioning and
general health improved in the lithium treatment groups. A second Cochrane Review evaluating the comparative efficacy of lithium in the long-term treatment of unipolar affective disorder was published in 2006. Cipriani et al.183 evaluated eight trials (n=475) comparing lithium to antidepressant therapy. Similar to the previous review, lithium therapy reduced rates of relapse (both depressive and manic) when compared to antidepressant therapy (p<0.05). No other significant differences in any outcomes were reported between treatment groups including quality-of-life, social functioning, occupational functioning and drop-out rates. A third Cochrane Review evaluating the efficacy of lithium in the treatment of schizophrenia was updated in 2015. Leucht et al.184 evaluated 22 studies (n=763) comparing lithium to placebo or other antipsychotic therapies. Most included studies were small and of short duration. Lithium therapy demonstrated no improvements when compared to placebo or other antipsychotic agents. Augmentation of antipsychotic therapy with lithium increased rates of efficacy when compared to antipsychotic therapy alone (no p-value reported). No significant differences in adverse events were reported between treatment groups; however, the adverse event data was limited to very few studies.

A systematic review and meta-analysis evaluating the efficacy of lithium in the prevention of mood episodes in bipolar disorders was published in 2014. Severus et al.185 evaluated seven trials (n=1,580) comparing lithium to placebo. According to the evidence, lithium therapy demonstrated increased rates of efficacy (defined as preventing overall mood episodes, both manic and depressive) when compared to placebo. When compared to anticonvulsant therapy, lithium therapy demonstrated increased rates of preventing manic episodes but no differences in preventing depressive or overall frequency of any episode. A meta-analysis evaluating the efficacy of lithium in acute bipolar depression was published in 2014. Selle et al.186 evaluated 24 trials including 10 different treatments including: aripiprazole (2 trials), carbamazepine (1 trial), lamotrigine (5 trials), lithium (1 trial), lurasidone (1 trial), olanzapine (2 trials), olanzapine-fluoxetine (1 trial), quetiapine (5 trials), valproate (4 trials) and ziprasidone (2 trials). Pooled evidence reported efficacy ranked as follows: olanzapine + fluoxetine ≥ valproate > quetiapine > lurasidone > olanzapine, aripiprazole, carbamazepine. Ziprasidone therapy was found to be ineffective and lithium therapy is inadequately studied.

A systematic review and meta-analysis evaluating the efficacy of lithium in the prevention of suicide in mood disorders was published in 2013. Cipriani et al.187 evaluated 48 randomized controlled trials (n=6674 participants, 15 comparisons). According to the evidence, lithium therapy was associated with reduced number of suicides (odds ratio [OR] 0.13, 95% confidence interval [CI] 0.03 to 0.66) and deaths from any cause (OR 0.38, 95% CI 0.15 to 0.95) when compared to other active comparators (amitriptyline, carbamazepine, valproate, fluoxetine, fluvoxamine, imipramine, lamotrigine, mianserin, maprotiline, nortriptyline, olanzapine, phenelzine, quetiapine, thyroid hormone). In addition, lithium therapy was evaluated in the augmentation of tricyclic and second-generation antidepressants in major depression in a systematic review and meta-analysis published in 2014. Nelson et al.188 evaluated 9 trials (n=237) and reported increased rates of treatment response when lithium was added to either a TCA or second-generation agent. Adverse event discontinuation rate with lithium therapy did not differ from placebo.

This evidence suggests lithium therapy is an effective treatment option in bipolar disorder and may also be effective in the treatment of refractory depression or schizophrenia.
Mirtazapine

Mirtazapine is labeled for use in the treatment of depression. One Cochrane Review, 3 additional systematic reviews and meta-analyses, 1 clinical review and 1 comparative clinical trial (mirtazapine vs trazodone) evaluating the efficacy of mirtazapine are available for evaluation.

One Cochrane Review evaluating the efficacy of mirtazapine in the treatment of depression was published in 2011. Watanabe et al100 evaluated 29 randomized controlled trials (n=4,974) comparing mirtazapine to other antidepressant agents. When compared to SSRIs, (12 trials, n=2,626) or to SNRIs (2 trials, n=415), mirtazapine therapy demonstrated significantly higher rates of efficacy. Evidence was insufficient to determine the clinical efficacy of mirtazapine compared to a TCA or to determine differences in treatment drop-out rates. Adverse event rates varied between treatment groups; mirtazapine therapy was associated with higher rates of weight gain and somnolence while SSRIs were associated with higher rates of nausea, vomiting and sexual dysfunction.

A systematic review and meta-analysis evaluating the efficacy of mirtazapine in the short-term treatment of depression was published in 2001. Bech et al60 evaluated seven trials (n=665) comparing mirtazapine to amitriptyline or placebo. According to the evidence, both mirtazapine and amitriptyline are more effective than placebo in reducing symptoms associated with major depression. In addition, both agents demonstrated early onsets of action compared to placebo. A second meta-analysis evaluating the efficacy of mirtazapine in the treatment of major depressive disorder was published in 2008. Papakostas et al189 evaluated 10 randomized, controlled trials (n=1,904) comparing mirtazapine to SSRIs. No differences in clinical response or discontinuation rates were reported between treatment groups. Differences in adverse events were reported between the agents with higher rates of fatigue, weight gain and dry mouth reported in the mirtazapine treatment groups and higher rates of insomnia and nausea in the SSRI treatment groups (p<0.05 for all differences). A third meta-analysis evaluating the efficacy of mirtazapine in the acute phase treatment of depression was published in 2010. Thase et al97 evaluated the efficacy of mirtazapine (N=1,484) compared to SSRIs (N=1,487) in 15 clinical trials. According to the evidence, mirtazapine therapy was associated with higher remission rates and faster time to remission compared to the SSRI agents (p<0.05). Comparative safety data was not provided in the review.

A clinical review of the evidence available evaluating the efficacy of mirtazapine was published in 2013. Alam et al190 evaluated 293 trials (n>2,000) to determine the therapeutic efficacy of mirtazapine in a number of psychiatric and medical conditions. According to the evidence, mirtazapine has a unique mechanism of action and demonstrates efficacy as an antidepressant with a rapid onset of action and high response/remission rates. Of note, mirtazapine therapy has demonstrated efficacy in the treatment of depression in special populations including treatment-resistant disease, geriatric depression, anxious depression and agitation. Evidence also suggests mirtazapine may be efficacious in the treatment of various neurologic conditions, insomnia, nausea/vomiting and pain. Two meta-analyses evaluating the efficacy of mirtazapine as add-on treatment to antipsychotic therapy for negative symptoms in patients with chronic schizophrenia are available. Vidal et al98 evaluated 5 studies and reported significantly improved negative symptoms in patients with schizophrenia with adjuvant mirtazapine therapy (p<0.05). Phan et al147 evaluated six studies and reported the outcome of improved negative symptoms with
adjuvant mirtazapine therapy is limited by short study duration and small sample sizes. A third meta-analysis evaluating the efficacy of mirtazapine in schizophrenia patients provided evidence in support of mirtazapine as a treatment for antipsychotic-induced akathisia, particularly in patients with contraindications to beta-blocker therapy or in patients with comorbid depression or negative symptoms.

Mirtazapine was compared to trazodone in one double-blind, randomized, controlled trial of 200 hospitalized patients with moderate-severe depression. Von Moffaert et al randomized patients to receive either mirtazapine 24-72 mg/day (n=100) or trazodone 150 to 400 mg/day (n=100) for 6 weeks. At the end of the study period, mirtazapine therapy demonstrated higher rates of efficacy (defined as a reduction in depressive symptoms and increased remission rates) compared to trazodone therapy. With regard to adverse events, trazodone was associated with higher rates of somnolence and postural symptoms when compared to mirtazapine.

This evidence suggests mirtazapine is an effective treatment option for patients with depression. In addition, mirtazapine may be effective in the treatment of depression in special populations and the evidence suggests mirtazapine therapy maybe more efficacious than SSRIs and trazodone.

Nefazodone

Nefazodone is labeled for use in the treatment of depression. Two meta-analyses and 1 clinical review evaluating the efficacy of nefazodone are available for evaluation.

One systematic review and meta-analysis evaluating the efficacy of nefazodone in the treatment of anxiety and agitation in patients with depression was published in 1995. Fawcet et al evaluated 6 randomized, double-blind trials (n=817) comparing nefazodone (n=184) to imipramine (n=288) or placebo (n=345). According to the evidence, both nefazodone and amitriptyline are more effective than placebo in reducing symptoms associated with major depression. Nefazodone also demonstrated significantly greater improvement in somatic anxiety compared to placebo, more rapid improvement in agitation compared to both imipramine and placebo and a low adverse event rate (5%) compared to imipramine (17%) and placebo (5%). One meta-analysis evaluating the efficacy of nefazodone in the treatment of major depression was published in 2007. Papakostas et al evaluated 9 studies (n=988) comparing the efficacy of nefazodone or trazodone compared to SSRIs. Overall, no differences in efficacy, discontinuation rates or adverse events were reported between nefazodone/trazodone treatment groups and SSRI treatment groups.

A clinical review of the evidence available evaluating the efficacy of nefazodone was published in 1996. Cyr et al evaluated double-blind, placebo-controlled studies to determine the pharmacokinetics, efficacy, safety and drug interactions of nefazodone. Based on the comparative evidence, nefazodone (>300 mg/day) was associated with increased rates of efficacy compared to placebo and similar rates of efficacy to imipramine. Nefazodone treatment was associated with a reduced adverse event rate compared to TCAs, a reduced rate of sexual dysfunctions compared to SSRIs and a reduced rate of dizziness compared to placebo trazodone.
The limited clinical evidence evaluating the efficacy of nefazodone suggests nefazodone is an effective treatment option for patients with depression.

Trazodone

Trazodone is labeled for use in the treatment of depression. Three systematic reviews and meta-analyses and 2 comparative clinical trials (trazodone vs bupropion and trazodone vs mirtazapine) evaluating the efficacy of trazodone are available for evaluation.

One meta-analysis evaluating the efficacy of trazodone in the treatment of depression was published in 1992. Patten et al194 evaluated 6 studies comparing trazodone to imipramine. According to the evidence, trazodone and imipramine demonstrate similar rates of efficacy on the treatment of depression. Adverse event data was not provided in the review. A second meta-analysis evaluating the efficacy of trazodone in the treatment of depression was published in 1993. Workman et al195 evaluated studies comparing imipramine, trazodone, bupropion and fluoxetine. According to the evidence, all of the agents are more efficacious than placebo in reducing depression symptoms. No differences in efficacy were reported between active treatment groups. A third meta-analysis evaluating the efficacy of trazodone in the treatment of major depression was published in 2007. Papakostas et al193 evaluated nine studies (n=988) comparing the efficacy of nefazodone or trazodone compared to SSRIs. Overall, no differences in efficacy, discontinuation rates or adverse events were reported between nefazodone/trazodone treatment groups and SSRI treatment groups.

Trazodone was compared to bupropion in one double-blind, randomized, controlled trial of 124 patients with moderate-severe depression. Weisler et al181 randomized patients to receive either bupropion 225-450 mg/day (n=63) or trazodone 150 to 400 mg/day (n=61) for 6 weeks. At the end of the study period, symptoms were improved by 58% in the bupropion treatment group and 46% in the trazodone treatment group and weight changes were reported as a 2.5 lb loss in the bupropion treatment group and 1.2 lb gain in the trazodone treatment group (\(p=\text{NS}\) for both outcomes). Increased rates of anorexia and anxiety were reported in the bupropion treatment group and increased rates of somnolence and edema were reported in the trazodone treatment group (\(p<0.05\)).

Trazodone was compared to mirtazapine in one double-blind, randomized, controlled trial of 200 hospitalized patients with moderate-severe depression. Von Moffaert et al192 randomized patients to receive either mirtazapine 24-72 mg/day (n=100) or trazodone 150 to 400 mg/day (n=100) for 6 weeks. At the end of the study period, mirtazapine therapy demonstrated higher rates of efficacy (defined as a reduction in depressive symptoms and increased remission rates) compared to trazodone therapy. With regard to adverse events, trazodone was associated with higher rates of somnolence and postural symptoms when compared to mirtazapine.

Clinical evidence evaluating trazodone in off-label indications, including insomnia, are also available for evaluation. Two Cochrane Reviews and four other systematic reviews and meta-analyses were identified for evaluation.

Seitz et al150 published a Cochrane Review of antidepressant therapy in the treatment of agitation and psychosis associated with dementia. A total of nine clinical trials (n=692) were
identified for evaluation. Sertraline and citalopram demonstrated improved outcomes while insufficient evidence is available to determine the efficacy of trazodone in this patient population. According to the limited evidence, trazodone appears to have a reduced adverse event rate compared to placebo and antipsychotic agents. McCleery et al155 published a Cochrane Review of treatments for sleep disturbances in Alzheimer's disease. A total of only 5 clinical studies with melatonin, trazodone and/or ramelteon were identified for evaluation. According to the limited evidence, low-dose (50 mg) trazodone may be a safe and efficacious treatment option in this patient population while melatonin and ramelteon do not appear to be associated with the same benefit. More comparative clinical evidence is required to make specific recommendations for the treatment of sleep disturbances in Alzheimer's disease.

A clinical review of the evidence available evaluating the efficacy of trazodone in the treatment of insomnia was published in 2005. Mendelson et al145 evaluated 18 clinical trials. Based on the available evidence, the efficacy of trazodone in insomnia is unknown. Most available studies are small and lack objective efficacy measures. In addition, a high adverse event discontinuation rate is reported with trazodone therapy due to sedation, dizziness, and psychomotor impairment. A systematic review evaluating the efficacy of trazodone in the treatment of insomnia in patients undergoing alcohol recovery was published in 2011. Kolla et al196 evaluated 20 clinical trials including carbamazepine, chlormethiazole, gabapentin, melperone, quetiapine, ritanserin, scopolamine, topiramate, trazodone, triazolam and zopiclone. According to the evidence, trazodone has the most data (based on three studies) with improved efficacy (improved sleep measures) compared to placebo in 2 trials and similar rates of efficacy compared to gabapentin in 1 open-label trial. One meta-analysis evaluating the efficacy of trazodone in the treatment of pediatric headaches was published in 2013. El-Chammas et al138 evaluated 21 clinical trials including clonidine, flunarizine, fluoxetine, pizotifen, propranolol, topiramate, trazodone and valproate. According to the evidence, both topiramate and trazodone demonstrated efficacy in reducing headache frequency compared to placebo. None of the other agents appeared to improve outcomes. A systematic review and meta-analysis evaluating the efficacy of trazodone in erectile dysfunction was published in 2003. Fink et al141 evaluated 6 trials (n=396) and reported improved outcomes with trazodone in 3 of the included trials. According to the limited evidence, high-dose trazodone may be associated with increased rates of efficacy. Adverse-event rates were not significantly higher in the trazodone treatment groups compared to placebo; specific adverse events reported in the trazodone treatment groups include dizziness (16%), dry mouth (19%), fatigue (15%) and sedation (16%).

This evidence suggests trazodone is more effective than placebo and equally effective as imipramine and nefazodone in the treatment of depression. Trazodone is used in many off-labeled indications, of which the evidence for safety and efficacy is limited and a benefit-harm ratio is not well defined.

Vilazodone

Vilazodone is labeled for use in the treatment of depression. One systematic review and one clinical review were identified for evaluation of vilazodone therapy.

Citrome et al70 evaluated the safety and efficacy profile of vilazodone in adult patients with major depressive disorder. Two randomized, double-blind trials (n=860) were identified for
evaluation. According to the limited evidence, vilazodone treatment is associated with increased rates of efficacy compared to placebo. The most frequently reported adverse events included diarrhea, nausea, vomiting and insomnia. No changes in sexual function or weight were reported in the studies. Wang et al. published a clinical evaluation of the same 2 randomized, double-blind trials and reported an earlier onset of action and absence of known cardiac adverse effects, which may be advantageous compared to other currently available antidepressant therapies. Comparative clinical trials are needed to determine the clinical utility of vilazodone therapy.

Vortioxetine

Vortioxetine is labeled for use in the treatment of depression. Five systematic reviews and meta-analyses were identified for evaluation of vortioxetine therapy.

Meeker et al. evaluated the safety and efficacy of vortioxetine in the treatment of acute depression. A total of 11 randomized, controlled trials (n=6,145) were identified for evaluation. According to the report, vortioxetine therapy is more efficacious than placebo but less efficacious than other SNRIs. The most frequently reported adverse effects with vortioxetine therapy were nausea and vomiting. No differences in efficacy but increased rates of adverse effects were reported with increasing doses of vortioxetine.

Pae et al. evaluated the efficacy of vortioxetine in the short-term treatment of major depressive disorder. Seven published and 5 unpublished randomized controlled trials (n=7,790) of short duration (6-12 weeks) were included in the analysis. Compared to placebo, vortioxetine therapy was associated with increased rates of response and remission. No differences in efficacy were reported between vortioxetine and SNRI therapy. The most frequent adverse events reported with vortioxetine therapy were nausea, vomiting, diarrhea and dry mouth. Adverse event discontinuation rates were lower in the vortioxetine treatment groups compared to SNRI treatment groups.

A second analysis by Pae et al. evaluated the efficacy of vortioxetine in the treatment of generalized anxiety disorder. A total of four short-term, randomized, placebo-controlled trials (n=606) were included in the analysis. According to the limited evidence, vortioxetine therapy is more efficacious than placebo. No differences in efficacy-related discontinuation rates were reported between treatment groups. Adverse event discontinuation rate was higher in the vortioxetine treatment group compared to placebo with significantly higher rates of nausea and dizziness in the active treatment group.

Berhan et al. evaluated the efficacy of vortioxetine in adult patients with major depressive disorder. A total of 7 randomized, double-blind trials (n=2,099) were included in the analysis. Vortioxetine therapy was associated with a ≥50% reduction in depressive symptoms when compared to baseline. No differences in comparative efficacy were reported when vortioxetine was compared to either placebo or active treatment (SNRI) therapy. Increased rates of adverse events were reported with vortioxetine therapy compared to placebo.

Fu et al. evaluated the efficacy of vortioxetine in treatment of major depressive disorder. Five randomized, placebo-controlled trials (n=1,700) were identified for evaluation. Compared to placebo, vortioxetine therapy reduced the rate of depressive symptoms. No differences in
remission rates were reported between vortioxetine and placebo treatment groups. The most frequently reported adverse events included diarrhea, dizziness, dry mouth, headache and nausea. Increased rates of nausea were reported in the vortioxetine treatment group compared to placebo. No differences in the rate of any other adverse events were reported between vortioxetine and placebo treatment groups.

Citrome et al69 evaluated the safety and efficacy profile of vortioxetine in adult patients with major depressive disorder. Five published and 6 unpublished randomized controlled trials of short duration (6-8 weeks) were included in the analysis. According to the evidence, vortioxetine treatment was associated with increased rates of efficacy compared to placebo. The most frequently reported adverse events included constipation, nausea and vomiting.

This evidence suggests vortioxetine therapy is efficacious in reducing depressive symptoms and improving remission rates when compared to placebo in adult patients with major depressive disorder. Limited data is available for vortioxetine therapy compared to other antidepressant therapies and more clinical trials are needed to determine the comparative efficacy of vortioxetine therapy. Vortioxetine therapy may also be useful in the treatment of generalized anxiety disorder.

Safety

Black Box Warnings1,2: Bupropion, mirtazapine, nefazodone, trazodone, vilazodone, vortioxetine and atomoxetine medications are labeled with a Black Box Warning. Use of these agents is associated with an increased risk of suicidal thoughts and behaviors in children, adolescents and young adults. Lithium labeling includes a Black Box Warning reminding prescribers that toxicity is related to serum levels, that toxic levels occur at near therapeutic levels and toxic levels may not differ overlap and that the drug should be initiated only with the availability of lithium monitoring.

Warnings, Precautions and Adverse Events associated with use of the miscellaneous serotonergic agents may be reviewed in Tables 7 and 8 below.

Adverse Events:
Atomoxetine:

The most common adverse events associated with atomoxetine at an incidence greater than 10% include increased, headache, insomnia, drowsiness, hyperhidrosis, xerostomia, nausea, decreased appetite, abdominal pain, vomiting, constipation, erectile dysfunction, systolic/diastolic blood pressure elevations and tachycardia.2,3

Serious adverse events associated with atomoxetine use include myocardial infarction, sudden cardiac death, liver injury or failure, cerebrovascular accident, dyskinesia, seizure, mania, psychotic disorder, suicidal thoughts, priapism and angioedema.2,3
Dittmann et al200 compared the efficacy and safety of lisdexamfetamine and atomoxetine in 267 children and adolescents with ADHD. Treatment emergent adverse events occurred at a similar rate with each treatment. Specifically, no differences were found between treatments for measures of diastolic or systolic blood pressure, pulse rate or weight reduction.

Reed et al201 performed a comprehensive review of 7 safety topics associated with the use of atomoxetine in children and adolescents, including suicidality, aggression/hostility, psychosis/mania, seizures, hepatic effects, cardiovascular effects and growth/development. The review included 70 papers, the European Summary of Product Characteristics (SPC) and the US label. Suicidality with atomoxetine was associated with a hazard ratio of 0.96 in a large-register-based study. A second meta-analysis111 found no significant association between atomoxetine and suicidality. A finding of aggression/hostility was not different in a meta-analysis comparing atomoxetine with placebo. Psychosis and activation of mania did occur in patients with comorbid bipolar disorder/depression. The 2-year seizure rate for atomoxetine in more than 2 million patients was 8 per 100,000 patients. The relationship of atomoxetine with liver disease/failure is unclear.201 Up to 12\% of pediatric patients may experience either small or more pronounced increases in heart rate or blood pressure on atomoxetine therapy. In long-term studies201, discontinuations due to cardiovascular events were rare and most vital signs remain within the age norms. QTc interval prolongations of 1.4\% were found during treatment of more than 3 years and not considered clinically significant. Overall, atomoxetine was not associated with clinically significant cardiovascular effects, aggression/hostility, growth reduction, seizures or suicidality.

A meta- and meta-regression analysis164 compared the efficacy and tolerability of atomoxetine vs. placebo in children and adolescents with ADHD. Evidence from 25 double-blind, randomized, controlled trials (N=3928) were included. The all-cause discontinuation rate did not differ between atomoxetine and placebo therapy. Discontinuation rates were higher with atomoxetine due to adverse events and with placebo due to inefficacy. More patients receiving atomoxetine reported greater than one adverse event or psychiatric adverse event. No differences between groups were found for serious adverse events, aggression or suicidality.164

A second meta- and meta-regression analysis included 9 randomized, controlled trials (N=1828) found adverse events occurred more frequently in atomoxetine-treated patients with baseline hyperactivity/impulsive symptoms and included decreased appetite, abdominal pain, vomiting, dyspepsia, somnolence, dizziness, fatigue, sleep disturbances, infection and pruritus.66

Bupropion:

The most common adverse events associated with bupropion occurring at an incidence greater than 10\% are tachycardia, headache, agitation, dizziness, insomnia, diaphoresis, weight loss, xerostomia, nausea, constipation, blurred vision and pharyngitis.2,3

Serious adverse events associated with bupropion use include complete atroventricular block, myocardial infarction, colitis, pancreatitis, pancytopenia, abnormal liver function, hepatitis, jaundice, liver damage, anaphylactoid reaction, anaphylaxis, delayed hypersensitivity disorder, rhabdomyelosis, seizure, delusional disorder, worsening depression, hallucinations, hostile behavior, activation of hypomania/mania/psychosis, paranoid ideation, suicidality, pulmonary embolism and angioedema.2,3
The most common serious adverse event associated with bupropion use was seizures, occurring at a rate of 1 per 1000 users.202 The risk of seizures was lower with use of SR vs IR products, at doses below 300 mg daily, in those without a personal or family history of seizures and without an underlying eating disorders.202 In the setting of accidental or intentional overdose, 6\% of subjects developed seizures, most commonly with the immediate release formulation.203

Cahill et al (2013) published a Cochrane Review that evaluated pharmacological interventions in smoking cessation.202 They performed an overview and network meta-analysis of 82 trials (N= 7859) and found a small, but not statistically significant increase in adverse events with bupropion compared to placebo.202 Bupropion use was associated with a 7-12\% treatment-emergent adverse event dropout rate. Serious adverse events occurred in 2.5\% bupropion-treated vs 2.2\% placebo-treated patients. There were no differences between bupropion and placebo with regard to serious neuropsychiatric or cardiovascular adverse events. The meta-analysis was not robust enough to provide meaningful results with respect to the risk of bupropion-induced seizures. A total of 6 trials reported 8 seizures associated with bupropion use while placebo use did not produce any seizures.

A prospective comparative study evaluating fetal exposure during the first trimester of pregnancy was associated with a higher rate of spontaneous abortions.204 In women giving birth, no fetal malformations were found.

Lithium:

The most common adverse events associated with lithium use at an incidence greater than 10\% include acne, hypothyroidism, weight gain, gastritis, nausea, xerostomia, leukocytosis, fine tremor, deep tendon hyperreflexia, nephrotoxicity, polyuria, and increased thirst.2,3

Serious adverse events associated with lithium use include bradyarrhythmias, Brugada syndrome, sinus node dysfunction, reduction in peripheral circulation (transient), erythema multiforme, ataxia, coma, pseudotumor cerebri, increased intracranial pressure, papilledema, epileptiform seizure, blurred vision, tinnitus, giddiness, renal interstitial fibrosis and angioedema.2,3

Cipriani et al183 performed a Cochrane Review of long-term treatment of unipolar or bipolar disorder with lithium or antidepressants. Their review of eight trials (N=475) found the overall adverse event rates did not differ between lithium and antidepressants; however, lithium use was associated more serious adverse effects (lithium toxicity, thyroid changes and renal dysfunction).

Cipriani et al205 performed another Cochrane Review comparing valproic acid, valproate and divalproex to other mood stabilizers, antipsychotics or placebo therapy in the maintenance treatment of bipolar disorder. Five studies involving 838 participants were included. Lithium was associated with statistically more diarrhea, polyuria, increased thirst and enuresis, whereas valproate use produced significant increases in sedation and infection.
McKnight et al124 performed a systematic review and meta-analysis involving 385 studies in which patients received lithium for treatment of mood disorders. The use of lithium was associated with a non-significant reduction in glomerular filtration rate of -6.22 mL/min. Urinary concentrating ability was significantly reduced by 15%. Thyroid use was statistically associated with clinical hypothyroidism, elevated levels of thyroid stimulating hormone (TSH) and increased levels of blood calcium and parathyroid hormone. Weight gain with lithium therapy was greater than with placebo but lower than with olanzapine therapy. No increased risk for congenital malformations, alopecia or skin disorders was found.

Mirtazapine:

The most common adverse events associated with mirtazapine use at an incidence greater than 10% include increased appetite, elevated triglycerides/cholesterol, weight gain, constipation, xerostomia and somnolence.2,3

Serious adverse events associated with mirtazapine use include agranulocytosis, neutropenia, liver cirrhosis, grand mal seizure, status epilepticus, exacerbation of depression, neuroleptic malignant syndrome, serotonin syndrome and suicidality.2,3

Watanabe et al100 published a Cochrane Review that compared mirtazapine to other antidepressants in the treatment of depression. The review included 29 randomized, controlled trials (RCTs) involving 4974 participants. Dropout rates were similar among all agents. Mirtazapine produced significantly less hypertension, tachycardia and tremor than tricyclic antidepressants (TCAs). A response to therapy at two weeks was similar with mirtazapine and TCAs and more rapid than with SSRIs. In comparison to venlafaxine, mirtazapine use was more effective at both 2-weeks and end-of-therapy analyses. Compared with the SSRIs, mirtazapine use was associated with more weight gain and increased appetite and less nausea, vomiting and sexual dysfunction.

Nefazodone:

The most common adverse events associated with nefazodone use at an incidence greater than 10% include orthostatic hypotension, constipation, nausea, xerostomia, asthenia, confusion, dizziness, headache, lightheadedness, agitation, drowsiness, insomnia, somnolence, weakness and blurred vision.2,3

Serious adverse events associated with nefazodone use include electrocardiogram changes, Stevens-Johnson syndrome, neutropenia, hepatitis/liver failure, anaphylaxis, seizures (rarely), serotonin syndrome, exacerbation of depression, suicidal thoughts or behaviors, priapism and angioedema.2,3

A comparative study of nefazodone and paroxetine found headache and somnolence to be the most commonly reported adverse events in each treatment group at similar rates.206 The manufacturer recommends initiating nefazodone therapy at low doses and titrating slowly to effective doses. A number of adverse events appear to be dose-related (e.g. somnolence, nausea, constipation, dizziness, vision changes, confusion, tinnitus) and to remit with continued use.207,208 Benign abnormal vision changes (scotoma and palinopsia) appear to be dose-related and reversible with a dosage reduction. Compared to SSRIs (fluoxetine, paroxetine, and sertraline) nefazodone
demonstrated statistically less agitation and sexual dysfunction whereas SSRIs produced less dizziness, dry mouth and light-headedness.208

Insomnia and agitation are uncommon with nefazodone and occur at a rate comparable to placebo.208 No differences were noted in tolerability in young vs elderly persons. Sexual dysfunction is uncommon. Nefazodone is not associated with weight gain. Nefazodone is associated with a lower rate of activation of mania/hypomania than tricyclic antidepressants (1.6\% vs 5.1\%). Nefazodone is not associated with the development of seizures. Rare cases of priapism have been reported; however, the low numbers do not allow for determination of causation. Nefazodone is not associated with serious cardiovascular effects. A potential for QT interval prolongation exists in combination with pimozide as nefazodone inhibits the metabolism and increases the serum concentrations of pimozide, further prolonging pimozide’s effects on the QT interval. Nefazodone is not associated with a withdrawal syndrome. Nefazodone does not increase suicidality and is relatively safe in overdosage.208

Nefazodone was removed from the market in the European Union in 2003 due to hepatotoxicity concerns.209 In the US, the FDA added a Black Box Warning to the label for Serzone®. Rare cases of liver failure some leading to transplant or death have been reported.207 The onset of liver damage varied from 6 weeks to months after initiation of therapy. Abnormal hepatic enzyme abnormalities and liver biopsy indicate a non-immunologic, acute hepatitis with cholestasis and centrolobar necrosis. Systematic reviews estimated the incidence of nefazodone hepatotoxicity resulting in transplant or death to be 1 case per 250,000 to 300,000 patient-years of exposure.210 It is believed that hepatotoxicity results from toxic intermediates produced during CYP3A4 metabolism of nefazodone. Routine monitoring of hepatic function is not recommended; however, patients should be evaluated for risk of hepatotoxicity (e.g. illicit drug use, alcohol consumption, exposure to other medications or hepatotoxins) and monitored for signs and symptoms of liver damage during therapy.208

Trazodone:

The most common adverse events associated with trazodone use at an incidence greater than 10\% include nausea, xerostomia, dizziness, headache, somnolence, blurred vision, nervousness and fatigue.2,3

Serious adverse events associated with trazodone use include cardiac dysrhythmia, hypotension, prolonged QT interval, torsades de pointes, hypersensitivity reactions, seizure, serotonin syndrome, priapism and suicidality.2,3

Although trazodone has low anticholinergic activity, an increased risk of orthostatic hypotension in the elderly or those with heart disease may occur due to transient, concentration-dependent \textit{α}-receptor antagonism.145,211 The risk of falls or other injuries may be increased.211 Trazodone interacts at the hERG potassium channel to prolong the QT interval. Life-threatening cardiac arrhythmias, including ventricular arrhythmias and torsade de pointes have occurred at both therapeutic and toxic concentrations.145 Trazodone should not be used with other medications that prolong the QT interval or produce cardiac toxicity. Trazodone use has resulted in priapism rarely and males predisposed to priapism or with an anatomical malformation of the penis should not receive this drug. CYP3A4 enzyme inhibitors may increase the concentrations of trazodone
while enzyme inducers may reduce trazodone plasma concentration. Trazodone is not recommended for use concomitantly with TCAs, MAOIs or fluoxetine secondary to the risks of cardiotoxicity or serotonin syndrome. Trazodone, as with other antidepressants may increase the incidence of suicidality.145,211

A review of the safety of trazodone when used for insomnia found similar rates of side effects as when used in the treatment of depression. Up to 30% have difficulty tolerating trazodone in clinical trials, resulting in discontinuation of therapy due to adverse events (25%-50%). The adverse event profile of trazodone has not been well studied in insomnia patients who typically receive lower daily doses of trazodone than those with depression. Bedtime dosing of trazodone, 25-75 mg, resulted in a 31% discontinuation rate due to next-day sedation in patients receiving fluoxetine for depression.145 Daytime somnolence was more common with trazodone 50 mg (23%) than placebo (8%) or zolpidem (16%).36

Vilazodone:

The most common adverse events associated with vilazodone use at an incidence greater than 10% include diarrhea, nausea, vomiting, and headache.2,3

Serious adverse events associated with vilazodone use include premature ventricular beats, abnormal bleeding, withdrawal syndrome, serotonin syndrome and suicidality.2,3

Laughrin et al212 reviewed the FDA approval process for vilazodone, including raw clinical data sets submitted to the FDA, vilazodone clinical trial development data and the sponsors analysis. The incidence of serious adverse events in Phase 2 and 3 trials (8 trials, N=2177) submitted to the FDA were similar for vilazodone and placebo patients.212 Discontinuations of vilazodone therapy due to adverse events were not above 1% for any single event and were most commonly reported for nausea, palpitations and fatigue. One patient receiving 80 mg daily and another who took an overdose of 240 mg vilazodone developed serotonin syndrome. Treatment emergent mania/hypomania was reported in 5 vilazodone- and 1 placebo-treated patient. The incidence of bleeding was 3% in both vilazodone and placebo treatment groups. In trials without active control, reporting of sexual dysfunction occurred more frequently with vilazodone although the incidence was low (<5%) and comparable to SSRIs. Vilazodone does not prolong the QT interval. In 5 patients who overdosed on vilazodone (200-280 mg) during Phase 2 and 3 trials, patients experienced serotonin syndrome, lethargy, restlessness, hallucinations, and disorientation. Vilazodone has a narrow therapeutic range as maximal dosing is often associated with intolerable gastrointestinal adverse events.79 Doses above 40 mg/day are not well tolerated by most patients.212

Vortioxetine:

The most common adverse event associated with vortioxetine use at an incidence greater than 10% is nausea. Although self-reporting of sexual dysfunction was low, scores on the Arizona Sexual Experience Scale did exceed 10% for both men and women.2,3

Serious adverse events associated with vortioxetine use include hyponatremia, abnormal bleeding, activation of mania/hypomania, serotonin syndrome and suicidality.2,3
Baldwin et al213 performed a pooled analysis of the safety and tolerability of vortioxetine in the treatment of depression. Withdrawal due to an adverse event was most frequent with venlafaxine followed by duloxetine and vortioxetine. Nausea and vomiting occurred at similar rates among the 3 agents and appeared to be dose-related with vortioxetine. Compared with other antidepressants, vortioxetine was associated with a lower frequency of insomnia and sexual dysfunction.

Meeker et al87 performed a systematic review and meta-analysis to evaluate the efficacy and harms associated with vortioxetine therapy. Discontinuation rates due to adverse events occurred more commonly with vortioxetine than SNRI or placebo treatment. Adverse events (vomiting, dizziness, hyperhidrosis, nasopharyngitis and fatigue) were significantly less common with vortioxetine 1 mg than an SNRI, however at a vortioxetine dose of 20 mg significant differences between treatment groups were found for hyperhidrosis. Serious adverse event rates did not differ at any dose.

Citrome et al69 performed a systematic review evaluating the safety and efficacy of vortioxetine in the treatment of major depressive disorder. The frequency of nausea was dose-dependent, occurred early in therapy and more commonly in women.
Table 7. Warnings and Precautions for the Miscellaneous Serotonergic Agents\(^9,10\)

<table>
<thead>
<tr>
<th>Antidepressants</th>
<th>US Boxed Warnings</th>
<th>Warnings/Precautions</th>
<th>Other Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bupropion</td>
<td>Antidepressants increase the risk of suicidal thinking and behavior in children, adolescents, and young adults (18 to 24 years of age) with major depressive disorder (MDD) and other psychiatric disorders; consider risk prior to prescribing.</td>
<td>Use with caution in patients with hepatic impairment</td>
<td>Potentially significant interactions may exist, requiring dose or frequency adjustment, additional monitoring, and/or selection of alternative therapy</td>
</tr>
<tr>
<td>(Wellbutrin®; Wellbutrin® SR; Wellbutrin® XL; Zyban®)</td>
<td>Serious neuropsychiatric events have occurred in patients taking bupropion for smoking cessation.</td>
<td>Use with caution in patients with renal impairment</td>
<td>Extended release tablet: Insoluble tablet shell may remain intact and be visible in the stool</td>
</tr>
<tr>
<td></td>
<td>Contraindications: seizure disorder (and other conditions that increase seizure risk, including arteriovenous malformation, severe head injury, severe stroke, CNS tumor, CNS infection); history of anorexia/bulimia; patients undergoing abrupt discontinuation of ethanol or sedatives; use of MAOIs (concurrently or within 14 days), linezolid, intravenous methylene blue or multiple bupropion formulations</td>
<td>Use with caution in the elderly; may be at greater risk of drug accumulation during chronic dosing</td>
<td>Adverse events have been observed in some animal reproduction studies; Bupropion and its metabolites are excreted into breast milk</td>
</tr>
<tr>
<td>Mirtazapine</td>
<td>Antidepressants increase the risk of suicidal thinking and behavior in children, adolescents, and young adults (18-24 years of age) with major depressive disorder (MDD) and other psychiatric disorders; consider risk prior to prescribing.</td>
<td>May cause anticholinergic effects (constipation, xerostomia, blurred vision, urinary retention); use with caution in patients with decreased gastrointestinal motility, paralytic ileus, urinary retention, BPH, xerostomia, or visual problems</td>
<td>Mirtazapine is not FDA approved for use in children</td>
</tr>
<tr>
<td>(Remeron®; Remeron® SolTab™)</td>
<td>Contraindications: use of MAOIs (concurrently or within 14 days), linezolid or intravenous methylene blue</td>
<td>May cause akathisia/psychomotor restlessness</td>
<td>Mirtazapine is not FDA approved for the treatment of bipolar depression</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QT prolongation, torsade de pointes, and ventricular fibrillation have been reported (rarely)</td>
<td>Potentially significant interactions may exist, requiring dose or frequency adjustment, additional monitoring, and/or selection of alternative therapy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tablets contain lactose; SolTab formulation contains phenylalanine</td>
</tr>
<tr>
<td>Serotonin Modulators</td>
<td>US Boxed Warnings</td>
<td>Warnings/Precautions</td>
<td>Other Considerations</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------------</td>
<td>--------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Nefazodone (Serzone®)</td>
<td>Antidepressants increase the risk of suicidal thinking and behavior in children, adolescents, and young adults (18-24 years of age) with major depressive disorder (MDD) and other psychiatric disorders; consider risk prior to prescribing.</td>
<td>Use with caution in patients with renal impairment</td>
<td>Nefazodone is not FDA approved for use in children</td>
</tr>
<tr>
<td></td>
<td>Cases of life-threatening hepatic failure have been reported. Discontinue if clinical signs or symptoms (such as increased serum AST or ALT levels greater than 3 times the upper limit of normal) suggest liver failure.</td>
<td>Use with caution in patients at risk of seizures</td>
<td>Nefazodone is not FDA approved for the treatment of bipolar depression</td>
</tr>
<tr>
<td></td>
<td>Contraindications: active liver disease or elevated serum transaminases; concurrent use or use of MAOIs within previous 14 days; concurrent use with carbamazepine, cispapride or pimozide; concurrent therapy with triazolam is generally contraindicated</td>
<td>May cause anticholinergic effects (constipation, xerostomia, blurred vision, urinary retention)</td>
<td>Potentially significant interactions may exist, requiring dose or frequency adjustment, additional monitoring, and/or selection of alternative therapy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>May impair platelet aggregation resulting in increased risk of bleeding events, particularly if used concomitantly with aspirin, NSAIDs, warfarin, or other anticoagulants</td>
<td>Adverse effects were observed in some animal reproduction studies; Nefazodone and its metabolites are excreted in breast milk</td>
</tr>
<tr>
<td>Trazodone (Desyrel®)</td>
<td>Antidepressants increase the risk of suicidal thinking and behavior in children, adolescents, and young adults (18-24 years of age) with major depressive disorder (MDD) and other psychiatric disorders; consider risk prior to prescribing.</td>
<td>Use with caution in patients with hepatic impairment</td>
<td>Trazodone is not FDA approved for use in children</td>
</tr>
<tr>
<td></td>
<td>Contraindications: use of MAO inhibitors (concurrently or within 14 days), linezolid or intravenous methylene blue</td>
<td>Use with caution in patients with renal impairment</td>
<td>Trazodone is not FDA approved for the treatment of bipolar depression</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Use with caution in patients at risk of seizures</td>
<td>Potentially significant interactions may exist, requiring dose or frequency adjustment, additional monitoring, and/or selection of alternative therapy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Use with caution in the elderly</td>
<td></td>
</tr>
<tr>
<td></td>
<td>US Boxed Warnings</td>
<td>Warnings/Precautions</td>
<td>Other Considerations</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Vilazodone (Viibryd®)</td>
<td>Antidepressants increase the risk of suicidal thinking and behavior in children, adolescents, and young adults (18-24 years of age) with major depressive disorder (MDD) and other psychiatric disorders; consider risk prior to prescribing. Contraindications: use of MAO inhibitors (concurrently or within 14 days), linezolid or intravenous methylene blue</td>
<td>Although the risk of conduction abnormalities is low relative to other antidepressants, QT prolongation (with or without torsade de pointes) and ventricular tachycardia has been observed with the use of trazodone. May impair platelet aggregation resulting in increased risk of bleeding events, particularly if used concomitantly with aspirin, NSAIDs, warfarin, or other anticoagulants. Use with caution in patients with a previous seizure disorder or condition predisposing to seizures such as brain damage or alcoholism. May impair platelet aggregation resulting in increased risk of bleeding events, particularly if used concomitantly with aspirin, NSAIDs, warfarin, or other anticoagulants.</td>
<td>Adverse effects were observed in some animal reproduction studies; Trazodone is excreted into breast milk. Potentially significant interactions may exist, requiring dose or frequency adjustment, additional monitoring, and/or selection of alternative therapy. Adverse events have been observed in animal reproduction studies; It is not known if vilazodone is excreted in breast milk.</td>
</tr>
<tr>
<td>Vortioxetine (Trintellix®)</td>
<td>Antidepressants increase the risk of suicidal thinking and behavior in children, adolescents, and young adults (18-24 years of age) with major depressive disorder (MDD) and other psychiatric disorders; consider risk prior to prescribing. Contraindications: use of MAO inhibitors (concurrently or within 14 days), linezolid or intravenous methylene blue</td>
<td>Use is not recommended in severe hepatic impairment. Use with caution in patients with seizure disorders</td>
<td>The FDA has approved a brand name change for the antidepressant Brintellix (vortioxetine) to decrease the risk of prescribing and dispensing errors resulting from confusion with the blood-thinning medicine Brilinta (ticagrelor). Vortioxetine is not approved for use in children. Vortioxetine is not FDA approved for the treatment of bipolar depression. Potentially significant interactions may exist, requiring dose or frequency adjustment, additional monitoring, and/or selection of alternative therapy.</td>
</tr>
<tr>
<td>US Boxed Warnings</td>
<td>Warnings/Precautions</td>
<td>Other Considerations</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Adverse events were observed in animal reproduction studies; It is not known if vortioxetine is excreted into breast milk</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Central Nervous System Agents

Atomoxetine (Strattera*)

- Use with caution in pediatric patients; may be an increased risk of suicidal ideation.

Contraindications: use with or within 14 days of MAO inhibitors; narrow-angle glaucoma; current or past history of pheochromocytoma; severe cardiac or vascular disorders in which the condition would be expected to deteriorate with clinically important increases in blood pressure (eg, 15 to 20 mm Hg) or heart rate (eg, 20 beats/minute).

- New or worsening symptoms of hostility or aggressive behaviors have been associated with atomoxetine, particularly with the initiation of therapy.

- Atomoxetine has been associated with serious cardiovascular events including sudden death in patients with preexisting structural cardiac abnormalities or other serious heart problems (sudden death in children and adolescents; sudden death, stroke, and MI in adults).

- Use may be associated with rare but severe hepatotoxicity.

- Use with caution in patients with a history of urinary retention or bladder outlet obstruction.

- Atomoxetine is not approved for major depressive disorder.

- Adverse events have been observed in animal reproduction studies; It is not known if atomoxetine is excreted in breast milk.

Antimanic Agents

Lithium (Eskalith CR®, Eskalith®; Lithobid® Slow-release)

- Lithium toxicity is closely related to serum concentrations and can occur at doses close to therapeutic levels. Facilities for prompt and accurate serum lithium determinations should be available before initiating therapy.

Contraindications: avoid use in patients with severe cardiovascular or renal disease, or with severe debilitation, dehydration, or sodium depletion.

- Hypercalcemia with or without hyperparathyroidism has been reported.

- Chronic therapy results in diminished renal concentrating ability (nephrogenic diabetes insipidus); this is usually reversible when lithium is discontinued.

- Avoid use in patients with significant fluid loss or sodium depletion due to an increased risk of lithium toxicity.

- Potentially significant interactions may exist, requiring dose or frequency adjustment, additional monitoring, and/or selection of alternative therapy.

- Some dosage forms may contain benzyl alcohol; large amounts of benzyl alcohol (≥99 mg/kg/day) have been associated with a potentially fatal toxicity (“gaspertotoxin”) in neonates.
<table>
<thead>
<tr>
<th>US Boxed Warnings</th>
<th>Warnings/Precautions</th>
<th>Other Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Avoid use in patients with significant renal disease due to an increased risk of lithium toxicity</td>
<td>Adverse events have been observed in animal reproduction studies; Lithium is excreted in breast milk and serum concentrations of nursing infants may be 10% to 50% of the maternal serum concentration</td>
</tr>
<tr>
<td></td>
<td>Use with caution in patients at risk of suicide</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Use with caution in patients with thyroid disease</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Generally, avoid use in severely debilitated patients due to an increased risk of lithium toxicity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Use with caution in the elderly patients due to an increased risk of lithium toxicity</td>
<td></td>
</tr>
</tbody>
</table>

Key: MDD – major depressive disorder; FDA – Food and Drug Administration; MAOI – monoamine oxidase inhibitor; ALT – alanine aminotransferase; AST – aspartate aminotransferase; NSAID – nonsteroidal anti-inflammatory drug; CNS – central nervous system
<table>
<thead>
<tr>
<th>Adverse Effect</th>
<th>Bupropion (%)</th>
<th>Mirtazapine (%)</th>
<th>Nefazodone (%)</th>
<th>Trazodone (%)</th>
<th>Vilazodone (%)</th>
<th>Vortioxetine (%)</th>
<th>Atomoxetine (%)</th>
<th>Lithium (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiovascular</td>
<td>Tachycardia (11%), Palpitations (2% to 6%), cardiac arrhythmia (5%), chest pain (3% to 4%), hypertension (2% to 4%; may be severe), flushing (1% to 4%), hypotension (3%)</td>
<td>Peripheral edema (2%), edema (1%), hypotension, vasodilation</td>
<td>Bradycardia, hypotension, orthostatic hypotension, peripheral edema, vasodilation</td>
<td>Edema (≥13%)</td>
<td>Palpitations (1% to 2%)</td>
<td>NR</td>
<td>Headache (19%; children and adolescents), insomnia (1% to 19%), drowsiness (8% to 11%), increased diastolic blood pressure (5% to 9%; ≥15 mm Hg), systolic hypertension (4% to 5%), palpitations (3%), cold extremities, edema, hypotension, myxedema, sinus node dysfunction, started response, syncope</td>
<td>Abnormal T waves on ECG, bradycardia, cardiac arrhythmia, chest tightness, circulatory shock, cold extremities, edema, hypotension, myxedema, sinus node dysfunction, started response, syncope</td>
</tr>
<tr>
<td>Central Nervous System</td>
<td>Headache (25% to 34%), agitation (2% to 32%), dizziness (6% to 22%), insomnia (11% to 20%), Confusion (8%), anxiety (3% to 7%), hostility (6%), nervousness (3% to 5%), sensory disturbance (4%), sleep disorder (4%), migraine (1% to 4%), abnormal dreams (3%), memory impairment (≥1%), drowsiness (2% to 3%), irritability (2% to 3%), pain (2% to 3%), akathisia (≥1%), central nervous system stimulation (1% to 2%), paresthesia (1% to 2%), twitching (1% to 2%), depression</td>
<td>Drowsiness (54%), Dizziness (7%), abnormal dreams (4%), abnormality in thinking (3%), confusion (2%), agitation, amnesia, anxiety, apathy, depression, hypothermia, malaise, myasthenia, paresthesia, twitching, vertigo</td>
<td>Agitation, dizziness, drowsiness, headache, insomnia, Abnormal dreams, ataxia, chills, confusion, hyperrnia, lack of concentration, memory impairment, paresthesia, psychomotor retardation</td>
<td>Sedation (46%), headache (33%), dizziness (25%), agitation (21%), ataxia (21%), confusion (21%), disorientation (21%), memory impairment (≥13%), migraine (≥1%)</td>
<td>Headache (15%), Dizziness (6% to 8%), insomnia (6% to 7%), drowsiness (4% to 5%), fatigue (4%), abnormal dreams (3%), restlessness (2% to 3%), paresthesia (2%), delayed ejaculation (1% to 2%), migraine (≥1), sedation (≥1%), panic attack (≥1), ventricular premature contractions (≥1%)</td>
<td>Female sexual disorder (self-reporting: 1% to 2%); Arizona Sexual Experience Scale: 22% to 34%; male sexual disorder (self-reporting: 3% to 5%); Arizona Sexual Experience Scale: 16% to 29%; Dizziness (8% to 9%); abnormal dreams (2% to 3%)</td>
<td>Fatigue (6% to 10%), dizziness (5% to 8%), depression (4% to 7%); disturbed sleep (3% to 7%), irritability (5% to 6%), jitteriness (2% to 5%); abnormal dreams (4%), chills (3%), paresthesia (adults 3%; postmarketing observation in children), anxiety (22%), hostility (children and adolescents 2%); emotional liability (1% to 2%); agitation, restlessness, sensation of cold</td>
<td>Ataxia, blackout spells, cogwheel rigidity, coma, confusion, dizziness, drowsiness, dystonia, EEG pattern changes, extrapyramidal reaction, fatigue, hallucination, headache, hypertonicity, local anesthetic, sedation, seizure, slowed intellectual functioning, slurred speech, stupor, tics, vertigo, worsening of organic brain syndromes</td>
</tr>
<tr>
<td>Adverse Effect</td>
<td>Bupropion (%)</td>
<td>Mirtazapine (%)</td>
<td>Nefazodone (%)</td>
<td>Trazodone (%)</td>
<td>Vilazodone (%)</td>
<td>Vortioxetine (%)</td>
<td>Atomoxetine (%)</td>
<td>Lithium (%)</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>---------------</td>
<td>--------------</td>
<td>--------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>------------</td>
</tr>
<tr>
<td>Dermatologic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pruritus, skin rash</td>
<td>Pruritus, skin rash</td>
<td>Night sweats (≥1%)</td>
<td>Hyperhidrosis (≥1%), night sweats (≥1%)</td>
<td>Pruritus (2% to 3%)</td>
<td>Hyperhidrosis (4% to 15%), Excoriation (2% to 4%), skin rash (2%), pruritus, urticaria</td>
<td>Acne vulgaris, alopecia, blue-gray skin pigmentation, dermal ulcer, dry or thinning of hair, exacerbation of psoriasis, folliculitis, pruritus, psoriasis, skin rash, xerosis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metabolic</td>
<td>Weight loss (14% to 23%), Weight gain (9%), menstrual disease (2% to 5%), decreased libido (3%), hot flash (1% to 3%)</td>
<td>Weight gain (12%), weight gain of >7% reported in 8% of adults, 49% of pediatric patients, increased serum cholesterol (15%), Increased serum triglycerides (6%), increased thirst</td>
<td>Decreased libido, increased thirst</td>
<td>Decreased libido (2%)</td>
<td>Decreased libido (2% to 4%), weight gain (2%)</td>
<td>NR</td>
<td>Weight loss (2% to 7%), decreased libido (3%), hot flash (3%), increased thirst (2%), menstrual disease</td>
<td>Hypothyroidism (females 14%; males 5% [Johnston 1999]), albuminuria, dehydration, diabetes insipidus, euthyroid goiter, glycosuria, hypercalcemia, hyperglycemia, hyperparathyroidism, hyperthyroidism, increased radioactive iodine uptake, increased thirst, polydipsia, weight gain, weight loss</td>
</tr>
<tr>
<td>Gastrointestinal</td>
<td>Xerostomia (17% to 28%), nausea (1% to 18%), Constipation (5% to 10%), abdominal pain (2% to 9%), diarrhea (5% to 7%), flatulence (6%), anorexia (3% to 5%), increased appetite (4%), dysgeusia (2% to 4%), vomiting (2% to 4%), dyspepsia (3%), dysphagia (≤2%)</td>
<td>Xerostomia (25%), increased appetite (17%), constipation (13%), Abdominal pain, anorexia, vomiting</td>
<td>Constipation, nausea, xerostomia, Diarrhea, dysgeusia, dyspepsia, gastroenteritis, increased appetite, vomiting</td>
<td>Xerostomia (25%), nausea (21%), Constipation (8%), abdominal pain (≥1%), dysgeusia (≥1%), vomiting (≥1%)</td>
<td>Diarrhea (26% to 29%), nausea (22% to 24%), Xerostomia (7% to 8%), abdominal pain (4% to 7%), vomiting (4% to 5%), dyspepsia (3%), flatulence (3%), increased appetite (3%), abdominal distension (2%), gastroenteritis (2%)</td>
<td>Nausea (dose-related, females >males, 21% to 32%; commonly occurs within the first week of treatment, then decreases in frequency but can persist in some patients), Diarrhea (7% to 10%), xerostomia (7% to 8%), constipation (5% to 6%), vomiting (3% to 6%), flatulence (2% to 3%)</td>
<td>Xerostomia (17% to 35%), nausea (7% to 26%), decreased appetite (15% to 23%), abdominal pain (7% to 18%), vomiting (4% to 11%), constipation (1% to 11%), Dyspepsia (4%), anorexia (3%), dysgeusia, flatulence</td>
<td>Abdominal pain, anorexia, dental caries, diarrhea, dysgeusia, dyspepsia, excessive salivation, flatulence, gastritis, nausea, vomiting, sialadenitis, sialorrhea, swelling of lips, xerostomia</td>
</tr>
<tr>
<td>Hematologic</td>
<td>NR</td>
<td>Increased serum ALT (2-3 times ULN: 2%)</td>
<td>Decreased hematocrit</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>Leukocytosis</td>
</tr>
<tr>
<td>Hepatic</td>
<td>NR</td>
<td>NR</td>
<td>Decreased hematocrit</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Neuromuscular & skeletal</td>
<td>Tremor (3% to 6%), myalgia (2% to 6%), weakness (2% to 4%), arthralgia (1% to 4%), arthritis (≤2%), neck pain</td>
<td>Weakness (8%), back pain (2%), myalgia (2%), tremor (2%), arthralgia, hyperkinesia, hypokinesia</td>
<td>Weakness, Arthralgia, neck stiffness, tremor</td>
<td>Back pain (5%), myalgia (≥1%), tremor (≥1%)</td>
<td>Arthralgia (2%), tremor (≥1%)</td>
<td>NR</td>
<td>Tremor (1% to 5%), muscle spasm, weakness</td>
<td>Joint swelling, muscle hyperirritability, neuromuscular excitability, polyarthralgia, tremor</td>
</tr>
<tr>
<td>Adverse Effect</td>
<td>Bupropion (%)</td>
<td>Mirtazapine (%)</td>
<td>Nefazodone (%)</td>
<td>Trazodone (%)</td>
<td>Vilazodone (%)</td>
<td>Vortioxetine (%)</td>
<td>Atomoxetine (%)</td>
<td>Lithium (%)</td>
</tr>
<tr>
<td>------------------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>--------------</td>
<td>---------------</td>
<td>------------------</td>
<td>-----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Ophthalmic/Otic</td>
<td></td>
<td></td>
<td>Blurred vision (9%), visual disturbance (7%), eye pain, visual field defect, Tinnitus</td>
<td>Blurred vision (5%), visual disturbance (21%)</td>
<td>Blurred vision (1%), xerophthalmia (1%)</td>
<td>NR</td>
<td>Blurred vision (1% to 4%), conjunctivitis (1% to 3%), mydriasis</td>
<td>Blurred vision, exophthalmos, nystagmus, transient scotoma, Tinnitus</td>
</tr>
<tr>
<td>Renal</td>
<td>Urinary urgency (≤2%), vaginal hemorrhage (≥2%), urinary tract infection (≥1%), Polyuria (2% to 5%)</td>
<td>Urinary frequency (2%), urinary tract infection</td>
<td>Impotence, mastalgia, urinary frequency, urinary retention,</td>
<td>Ejaculatory disorder (2%), urinary urgency (≤1%)</td>
<td>Erectile dysfunction (≤1%), orgasm disturbance (1% to 2%)</td>
<td>NR</td>
<td>Erectile dysfunction (8% to 21%), Ejaculatory disorder (2% to 6%), urinary retention (1% to 6%), dysmenorrhea (3%), dysuria (2%), orgasm abnormal, pollakiuria, prostatitis, testicular pain, urinary frequency</td>
<td>Impotence, incontinence, oliguria</td>
</tr>
<tr>
<td>Respiratory</td>
<td>Pharyngitis (3% to 13%), Upper respiratory infection (9%), cough (1% to 4%), sinusitis (1% to 5%)</td>
<td>Flu-like symptoms (5%), dyspnea (1%), increased cough, sinusitis</td>
<td>Bronchitis, cough, dyspnea, flu-like symptoms, pharyngitis</td>
<td>Dyspnea (≥1%)</td>
<td>NR</td>
<td>NR</td>
<td>Pharyngolaryngeal pain</td>
<td>Decreased creatinine clearance, polyuria</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td><1%, postmarketing, and/or case reports (limited to life-threatening or important): Abnormal accommodation, agitated behavior, akinesia, alopecia, anemia, anaphylaxis, shock, anaphylactic reaction, asthma, angioedema, angle-closure glaucoma, aphasia, ataxia, atrialventricular block, bronchospasm, bruxism, cerebrovascular accident, colitis, coma, cystitis, deafness, delayed hypersensitivity, delirium, delusions, depersonalization, derealization, diplopia, dysarthria, dyskinesia, dyspareunia, dysphoria, dystonia, dysuria, edema, EEG pattern changes, emotional lability, erythema multiforme, esophagitis, euphoria, exfoliative dermatitis,</td>
<td><1%, postmarketing, and/or case reports: Abnormal gait, abnormal hepatic function tests, abnormality in thinking, accommodation disturbance, acute, angina pectoris, anxiety, aphasia, apnea, atrial fibrillation, bladder pain, bradycardia, breast engorgement, breast hypertrophy, cardiac arrest, cardiac arrhythmia, cardiac conduction disturbance, cardiac failure, cerebrovascular accident, chills, cholesterol, diastolic, dry eye syndrome, erectile dysfunction, esophageal dysphagia, extrapyramidal reaction, eye pain, flatulence, flushing, hallucination, hemolytic anemia, hirsutism, hyperbladder, hypertension, hyperdipsia, hypoesthesia, hypomania, mania, seizure, serotonin syndrome, vertigo, withdrawal syndrome</td>
<td><1%, postmarketing, and/or case reports: Abnormal gait, abnormal hepatic function tests, abnormality in thinking, accommodation disturbance, acute, angina pectoris, anxiety, aphasia, apnea, atrial fibrillation, bladder pain, bradycardia, breast engorgement, breast hypertrophy, cardiac arrest, cardiac arrhythmia, cardiac conduction disturbance, cardiac failure, cerebrovascular accident, chills, cholesterol, diastolic, dry eye syndrome, erectile dysfunction, esophageal dysphagia, extrapyramidal reaction, eye pain, flatulence, flushing, hallucination, hemolytic anemia, hirsutism, hyperbladder, hypertension, hyperdipsia, hypoesthesia, hypomania, mania, seizure, serotonin syndrome, vertigo, withdrawal syndrome</td>
<td><1%, postmarketing, and/or case reports: Anger, closure glaucoma, dysgeusia, dyspepsia, flushing, hypomania, hypomania, mania, seizure, serotonin syndrome, vertigo, withdrawal syndrome</td>
<td><1%, postmarketing, and/or case reports: Anger, closure glaucoma, dysgeusia, dyspepsia, flushing, hypomania, hypomania, mania, seizure, serotonin syndrome, vertigo, withdrawal syndrome</td>
<td><1%, postmarketing, and/or case reports: Anger, closure glaucoma, dysgeusia, dyspepsia, flushing, hypomania, hypomania, mania, seizure, serotonin syndrome, vertigo, withdrawal syndrome</td>
<td>Fever, Angioedema</td>
<td></td>
</tr>
<tr>
<td>Adverse Effect</td>
<td>Bupropion (%)</td>
<td>Mirtazapine (%)</td>
<td>Nefazodone (%)</td>
<td>Trazodone (%)</td>
<td>Vilazodone (%)</td>
<td>Vortioxetine (%)</td>
<td>Atomoxetine (%)</td>
<td>Lithium (%)</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>--------------</td>
<td>--------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>extrapyramidal reaction, extrasystoles, facial edema, gastric ulcer, gastroesophageal reflux disease, gastrointestinal hemorrhage, gingival hemorrhage, glossitis, glycosuria, gynecomastia, hallucination, hepatic injury, hepatic insufficiency, hepatitis, hirsutism, hyperglycemia, hyperkinesia, hypertension, hypoglycemia, hypokinesia, hypokinesia, hypopnea, hypopnea, hypomania, impotence, increased intraocular pressure, increased libido, intestinal perforation, jaundice, leukocytosis, leukopenia, lymphadenopathy, manic behavior, musculoskeletal chest pain, myasthenia, mydriasis, myocardial infarction, mycosis, neuralgia, neuropathy, orthostatic hypotension, painful erection, pancreatitis, pancytopenia, paraesthesia, paresthesia, psychiatric signs and symptoms, pulmonary embolism, rhabdomyolysis, salpingitis, sciatica, seizure (dose-related), SIADH, skin photosensitivity, Stevens-Johnson syndrome, stomatitis, suicidal ideation, syncope, tardive dyskinesia, thrombocytopenia, tongue edema, urinary incontinence, urinary retention, vasodilatation</td>
<td>cardiac arrest, cardiomegaly, cellulitis, cerebral ischemia, chest pain, chills, cholecystitis, colitis, conjunctivitis, cystitis, deafness, dehydration, delirium, delusions, dementia, depersonalization, dermal ulcer, diabetes mellitus, diarrhea, diplopia, drug dependence, dysarthria, dyskinesia, dysmenorrhea, dystonia, dysuria, ejaculatory disorder, emotional lability, enlargement of abdomen, enlargement of salivary glands, eosinophilia, epistaxis, eructation, erythema multiforme, euphoria, exfoliative dermatitis, extrapyramidal reaction, eye pain, facial edema, fatigue, fever, gastritis, gastroenteritis, gingival hemorrhage, glaucoma, glossitis, goiter, gout, hallucination, headache, hematuria, hepatic cirrhosis, herpes simplex infection, herpes zoster, hiccups, hostility, hyperacusis, hyperreflexia, hypotension, hypothyroidism, jaundice, lactic dehydrogenase, lactic acidosis, lack of appetite, lactic acidosis, leukocytosis, liver disease, liver injury, liver cirrhosis, liver failure, hepatic failure, hepatic necrosis, hepatitis, hernia, hiccups, hostility, hyperacusis, hypercholesterolemia, hyperkinesia, hypermenorrhea, hypersensitivity reaction, hypertension, hyperventilation, hypoglycemia, hyponatremia, hypoponemia, increased serum ALT, increased serum AST, increased serum prolactin, keratoconjunctivitis, laryngitis, leukopenia, lymphadenopathy, maculopapular rash, malaise, metrorrhagia, muscle rigidity, mydriasis, myoclonus, nephrolithiasis, neuralgia, neuroleptic malignant syndrome (Stevens, 2008), nocturia, nocturnal amylase, oliguria, oral candidiasis, oral mucosa ulcer, otalgia, pallor, paranoia, pelvic pain, peptic ulcer, periorbital abscess, photophobia, pneumonia, polyuria, priapism, rectal hemorrhage, rhabdomyolysis (with Lovastatin/simvastatin), serotonin syndrome, sialorrhhea, skin hyperdensity, hepahysthesia, hypoglycemia, hypotension, impotence, increased serum amylase, increased serum urine output, insomnia, jaundice, lack of concentration, lactation, leukocytosis, leukonychia, liver enzyme disorder, methemoglobinemia, muscle twitching, myocardial infarction, orgasm abnormal, orthostatic hypotension, palpitations, paranoia, paresthesia, photophobia, prolonged Q-T interval on ECG, pruritus, psoriasis, psychosis, reflux esophagitis, retrograde ejaculation, seizure, SIADH, sialorrhrea, skin photosensitivity, skin rash, speech disturbance, stupor, syncope, tachycardia, tardive dyskinesia, tinnitus, torcades de pointes, urinary incontinence, urinary retention, urticaria, vasodilatation, ventricular ectopy, ventricular tachycardia, vertigo, vulvar pain, weakness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adverse Effect</td>
<td>Bupropion (%)</td>
<td>Mirtazapine (%)</td>
<td>Nefazodone (%)</td>
<td>Trazodone (%)</td>
<td>Vilazodone (%)</td>
<td>Vortioxetine (%)</td>
<td>Atomoxetine (%)</td>
<td>Lithium (%)</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>---------------</td>
<td>--------------</td>
<td>--------------</td>
<td>----------------</td>
<td>----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>hypotension, hypothyroidism, hypotonia, impotence, increased acid phosphatase, increased creatine phosphokinase, increased libido, increased serum AST, insomnia, intestinal obstruction, keratoconjunctivitis, laryngitis, left heart failure, lethargy, leukopenia, leukorrhea, lymphadenopathy, lymphocytosis, manic reaction, mastalgia, menorrhagia, migraine, mouth edema, myocardial infarction, myoclonus, myositis, nausea, neck pain, neck stiffness, nephrolithiasis, nightmares, nystagmus, oral candidiasis, orthostatic hypotension, ostealgia, osteoarthritis, osteoporosis, otalgia, otitis media, pancreatitis, pancytopenia, paralysis, paranoia, petechia, phlebitis, pneumonia, pneumothorax, polyuria, prolonged Q-T interval on ECG, psychomotor agitation, psychoneurosis, psychotic depression, pulmonary embolism, restless leg syndrome, photosensitivity, Stevens-Johnson syndrome, stomatitis, suicidal ideation, syncope, tachycardia, tendinous contracture, tenosynovitis, thrombocytopenia, tonic-clonic seizures, twitching, ulcerative colitis, urinary incontinence, urinary urgency, urticaria, uterine fibroid enlargement, uterine hemorrhage, vaginal hemorrhage, varicose veins, ventricular premature contractions, vertigo, vesiculobullous dermatitis, voice disorder, weight loss, xerodermia, yawning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adverse Effect</td>
<td>Bupropion (%)</td>
<td>Mirtazapine (%)</td>
<td>Nefazodone (%)</td>
<td>Trazodone (%)</td>
<td>Vilazodone (%)</td>
<td>Vortioxetine (%)</td>
<td>Atomoxetine (%)</td>
<td>Lithium (%)</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>--------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>rhabdomyolysis, rupture of tendon, seborrhea, sedation, seizure, serotonin syndrome, sialorrhea, skin hypertrophy, skin photosensitivity, Stevens-Johnson syndrome, stomatitis, stupor, suicidal behavior, suicidal ideation, syncope, tenosynovitis, thrombocytopenia, tongue discoloration, tongue edema, tonic-clonic seizures, torsades de pointes (rare), toxic epidermal necrolysis, ulcer, urethritis, urinary incontinence, urinary retention, urinary urgency, urticaria, uterine hemorrhage, vaginitis, vascular headache, ventricular fibrillation, ventricular premature contractions, ventricular tachycardia, weight loss, withdrawal syndrome, xeroderma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key: NR = not reported
Summary

Overall, each of the miscellaneous and serotonergic agents demonstrates efficacy in the treatment of labeled indications. Evidence supports the use of bupropion in the treatment of smoking cessation. Evidence supports the use of atomoxetine in the treatment of ADHD with efficacy similarly to methylphenidate. Evidence supports the use of lithium in bipolar disorder. Comparative trials among the miscellaneous serotonergic agents in the treatment of depression are limited and clinical evidence is insufficient to differentiate between agents. The miscellaneous serotonergic medications do differ in their adverse event profiles. Limited comparative evidence supports the safety and tolerability of the various agents. Individualization of therapy is recommended with consideration of the patient age, history, comorbidities, type and severity of mental disorder, underlying disease and concurrent medications.
References

69. Citrome L. Vortioxetine for major depressive disorder: a systematic review of the efficacy and safety profile for this newly approved antidepressant - what is the number needed to treat, number needed to harm and likelihood to be helped or harmed? *International journal of clinical practice.* 2014;68(1):60-82.

70. Citrome L. Vilazodone for major depressive disorder: a systematic review of the efficacy and safety profile for this newly approved antidepressant - what is the number needed to treat, number needed to harm and likelihood to be helped or harmed? *International journal of clinical practice.* 2012;66(4):356-368.

160. McDonagh MS, Christensen V, Peterson K, Thakurta S. Drug Class Review: Pharmacological Treatments for Attention Deficit Hyperactivity Disorder. Update 3.: Oregon Health and Science University; 2009.

193. Papakostas GI, Fava M. A meta-analysis of clinical trials comparing the serotonin (5HT)-2 receptor antagonists trazodone and nefazodone with selective serotonin reuptake inhibitors for...

209. Rhian McNaughton GH, Saad Shakir. An investigation into drug products withdrawn from the EU market between 2002 and 2011 for safety reasons and the evidence used to support the decision-making *BMJ Open* 2014;4:1 e004221 doi:10.1136/bmjopen-2013-004221

